The Z Shell Manual

Version 5.8.1
Updated February 12, 2022

Original documentation by Paul Falstad

This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Table of Contents

1 The Z Shell Manual 1
1.1 Producing documentation from zsh.texi 1

2 Introduction.......... 1
2.1 AULOT . oo 1
2.2 Availability 1
2.3 Mailing Lists. . ..ot 2
2.4 The Zsh FAQ 2
2.5 The Zsh Web Page. ... e 2
2.6 The Zsh Userguide.ooonuuiii e e 3
2.7 SE ALSO . it 3

3 Roadmap......... ... 3
3.1 When the shell starts 3
3.2 Interactive Use. ... e 3
3.2. 1 CompPletionttt 4

3.2.2 Extending the line editor......... ... 4

3.3 ODHIOMIS . . v ettt 4
3.4 Pattern Matching i 4
3.5 General Comments ON SYNEAKttt e e e 5
3.6 Programmingttt e 5

4 Invocation............... i 5
4.1 INVOCAEION . . oottt 5
4.2 Compatibilibyo 7
4.3 Restricted Shell. 7

5 Files. ... 8
5.1 Startup/Shutdown Files........ ... o 8
0.2 FleS . oottt 9

6 Shell Grammar 9
6.1 Simple Commands & Pipelines. 9
6.2 Precommand Modifiersot 10
6.3 Complex COmMMAndSttt e e e 11
6.4 Alternate Forms For Complex Commands...............cooiiiiiiiiiiiiiieaan... 13
6.5 Reserved WoOrds 14
6.6 ErTOrS . . 15
6.7 COMIMENTS .« o ottt ettt ettt e et e ettt e et e e e e e e 15
6.8 ALIASIIIE . ..ottt 15
6.8.1 Alias difficulties. 16

6.9 QUOBIIE . o oot e 17

7 Redirection.......... 17
7.1 Opening file descriptors USing parametersc..eevirrte it ennineeennnnn.. 19
7.2 MUIBIOS . o ot 20

7.3 Redirections with no command. 21

8 Command Execution, 21
9 Functions 22
9.1 Autoloading Functions. e 22
9.2 Anonymous Functions i 24
9.3 Special FUnctions 24
9.3.1 HoOK FUNCHIONSo 24
9.3.2 Trap Functions 25

10 Jobs & Signals............... . 27
10,0 0D . ottt 27
10.2 Signals . ..o 28
11 Arithmetic Evaluation....................................... 28
12 Conditional Expressions................ 32
13 Prompt Expansion.................. 35
13.1 Expansion of Prompt Sequences i 35
13.2 Simple Prompt EScapes. 35
13.2.1 Special CharaCters.ot 35
13.2.2 Login information......... ... e 35
13.2.3 Shell State e 35
13.2.4 Date and time e 36
13.2.5 Visual effectso 37

13.3 Conditional Substrings in Prompts............c i 38
14 EXpansionooiiiiiiiii 40
14.1 History EXpansion 40
T4 1.1 OVOIVIEW oottt e ettt et e e e e e e e 40
14.1.2 Event Designators 41
14.1.3 Word Designators.ttt e 42
14.1.4 MOIIErS . . .ot 42

14.2 Process SubStitUtiont 45
14.3 Parameter EXpansion 46
14.3.1 Parameter Expansion Flags........ ... i i 51
14.3.2 RULES . .ot 57
14.3.3 EXamples 60

14.4 Command Substitutiono i 61
14.5 Arithmetic EXpansion 61
14.6 Brace EXpansion.ooouii i e 61
14.7 Filename EXPansionouoeoeitnin i e 62
14.7.1 Dynamic named directories 62
14.7.2 Static named directories e 63
14.7.3 ‘=" @XPANSION . . o o\ttt 64

LA T4 NOES . oottt 64

14.8 Filename Generation.o.o.uuoiint it 64
14.8.1 GIOD OPErators . ..ottt ettt e e et e 64
14.8.2 ksh-like Glob Operators.coiiiiii e 67
14.8.3 Precedence 67

14.8.4 Globbing Flags e 67

14.8.5 Approximate Matchingot i 69
14.8.6 Recursive Globbing i 70
14.8.7 Glob Qualifiers i 71
15 Parameters............. i 75
15,1 DesCription . ..o e 75
15.2 Array Parameters. e 76
15.2.1 Array SUDSCIIDES .« ottt 78
15.2.2 Array Element ASSIgnment.ooiuiiiiiiii 78
15.2.3 Subscript Flagso 79
15.2.4 Subscript Parsing e 81
15.3 Positional Parameters.o i 82
15.4 Local Parameters. ... e 82
15.5 Parameters Set By The Shell ... 83
15.6 Parameters Used By The Shell....o 88
16 OPptions. 97
16.1 Specifying Options.ottt e e 97
16.2 Description of Options. e 98
16.2.1 Changing Directories.ttt e 98
16.2.2 Completiont 99
16.2.3 Expansion and Globbing........ ..o 101
16.2.4 HiStOTY o oo e 105
16.2.5 Initialisation.o e 107
16.2.6 Input/Outputooiui 107
16.2.7 Job Control 109
16.2.8 Promplting.o 110
16.2.9 Scripts and Functions. e 111
16.2.10 Shell Emulation 114
16.2.11 Shell State ...t 118
16.2.12 Zle .ot 119
16.3 Option AlASES. . ..ottt 120
16.4 Single Letter Options.t e 120
16.4.1 Default seto 120
16.4.2 sh/ksh emulation Set...........ouiuiuieiii i 122
16.4.3 AlSO NOTE . o o ettt e e 122
17 Shell Builtin Commands................................ ... 123
18 Zsh Line Editor............... 161
18.1 DeSCTIPtiON . . . ve et e 162
18.2 KOy Ia DS . o v vttt ettt et e 162
18.2.1 Reading Commandsouuuiiinnii e 163
18.2.2 Local Keymapsottt e 163
18.3 Zle BUuiltins.o e 163
18.4 Wid@ets . ..ot 172
18.5 User-Defined Widgetso e 172
18.5.1 Special Widgetsot 177
18.6 Standard WIdgetsvv e e 178
18.6.1 MOVEIMENTttt ettt e e 178
18.6.2 History Control. e 180

18.6.3 Modifying Texto 184

18.6.4 ATrGUIMENES . . oottt ettt e e 188
18.6.5 Completion e 188
18.6.6 Miscellaneous.t e 189
18.6.7 Text ObJeCts .ottt 194
18.7 Character Highlighting 195
19 Completion Widgets ... 197
191 DeSCription . . oottt 198
19.2 Completion Special Parameters 198
19.3 Completion Builtin Commands e 203
19.4 Completion Condition Codesouinniiii e 209
19.5 Completion Matching Control i i 210
19.6 Completion Widget Example 213
20 Completion System 213
20.1 DeSCTiptIOn . . o oo e 213
20.2 Initialization e 214
20.2.1 Use of compinit. e 215
20.2.2 Autoloaded fillest 216
20.2.3 FUNCHIONS. . o 218
20.3 Completion System Configuration., 220
20.3.1 OVeIVIEW . oottt 220
20.3.2 Standard Tags 222
20.3.3 Standard Styles........oo 226
20.4 Control FUNCHIONSot 248
20.5 Bindable Commands.t e 254
20.6 Utility FUnctions e 256
20.7 Completion System Variables........ ... i 280
20.8 Completion Directories e e 280
21 Completion Using compct]l 281
21.1 Types of compPletionvnt e 281
21,2 DeSCIiPtION . . o oo e 281
21.3 Command Flagso e 282
21.4 Option Flags 283
21.4.1 Simple Flags.o 283
21.4.2 Flags with Argumentst i 284
21.4.3 Control Flags. 285
21.5 Alternative Completiont 288
21.6 Extended Completion.iii i e 288
21.7 EXaADIE . oo 289
22 Zsh Modules..... 290
22. 1 DeSCTIPtION . o o ot 290
22.2 The zsh/attr Module 291
22.3 The zsh/cap Module. 292
22.4 The zsh/clone Module....... ... 292
22.5 The zsh/compctl Module 293
22.6 The zsh/complete Module i 293
22.7 The zsh/complist Module......... i 293
22.7.1 Colored completion LStINgGsoovvntin i 293

22.7.2 Scrolling in completion listings. ... 295

22.7.3 Menu selection. i 295
22.8 The zsh/computil Module 298
22.9 The zsh/curses Module 299

2291 Builbin 300

22.9.2 Parameters......... ... 303
22.10 The zsh/datetime Module 303
22.11 The zsh/db/gdbm Module.......... ... i 304
22.12 The zsh/deltochar Module.......... ... i 305
22.13 The zsh/example Module. 305
22.14 The zsh/files Module 306
22.15 The zsh/langinfo Module........ i 308
22.16 The zsh/mapfile Module. i 308

22.16.1 Limitations.........oouiiii 309
22.17 The zsh/mathfunc Module...... 309
22.18 The zsh/nearcolor Module......... i 310
22.19 The zsh/newuser Module. 311
22.20 The zsh/parameter Module......... 311
22.21 The zsh/pcre Module. 314
22.22 The zsh/param/private Module........... 315
22.23 The zsh/regex Module. 316
22.24 The zsh/sched Module. i 317
22.25 The zsh/net/socket Module.o i 318

22.25.1 Outbound Connectionso 318

22.25.2 Inbound Connections.......... i i 318
22.26 The zsh/stat Module...... 318
22.27 The zsh/system Module i 320

22.27.1 Builtinso 320

22.27.2 Math Functions 323

22.27.3 Parameters............. 323
22.28 The zsh/net/tcp Module 324

22.28.1 Outbound Connections 324

22.28.2 Inbound Connections............. .. . 325

22.28.3 Closing Conmnections . .« .. .uutt ettt et e e e 325

22.28.4 ExXampleo 325
22.29 The zsh/termcap Module...... ... 326
22.30 The zsh/terminfo Module........ 326
22.31 The zsh/zftp Module 326

22.31.1 Subcommands........... 327

22.31.2 Parameters.......... ... 330

22.31.3 Functions 332

22314 Problems.o 332
22.32 The zsh/zle Moduleo 333
22.33 The zsh/zleparameter Module i i 333
22.34 The zsh/zprof Module. 333
22.35 The zsh/zpty Module. 334
22.36 The zsh/zselect Module 335
22.37 The zsh/zutil Module 336

23 Calendar Function System................................. 341
23. 1 DeSCriPtiOn . « oot e 341
23.2 File and Date Formats............ 342

23.2.1 Calendar File Format........... 342

23.2.2 Date Format. 342

23.2.3 Relative Time Format 344

23.2.4 Example. 345
23.3 User FUNCHIONS . ..ottt ettt e e 345
23.3.1 Calendar system functionso 345
23.3.2 Glob qualifiers. ... 349
23,4 SEYles e 351
23.5 Utility functions.o i e 351
23,6 BUZS . oo 353
24 TCP Function System 353
24. 1 DeSCTiPtION . o oot 353
24.2 TCP User FUnCHions.ooiiiit e e 353
24.2.1 Basic I/O ..o 354
24.2.2 Session Managementttt e 356
24.2.3 Advanced I/O .. .o 357
24.2.4 ‘One-shot’ file transfer e 359
24.3 TCP User-defined Functions.o 359
24.4 TCP Utility Functions. e e 360
24.5 TCP User Parameterst e 361
24.6 TCP User-defined Parameterscooiiiiiiiiiii e 362
24.7 TCP Utility Parametersou it e 363
24.8 TCP EXamplesot 363
249 TOP Bugs. . ettt 364
25 Zftp Function System 364
25. 1 DeSCTiption . . o oo e 364
25.2 Installationttt 364
253 FUNCHIONS . . oottt e 365
25.3.1 Opening a CONNECION\ttt et et ettt e et e e e 365
25.3.2 Directory managementttt 365
25.3.3 Status COMMANASttt et e 366
25.3.4 Retrieving fileso 367
25.3.5 Sending files 367
25.3.6 Closing the conmectionuue et eaeens 368
25.3.7 Session Managemento..t ettt 368
25.3.8 BoOKMaATKSo 369
25.3.9 Other functions. 369
25.4 Miscellaneous Features 370
25.4.1 ConfigUration.t 370
25.4.2 Remote globbing. ... 371
25.4.3 Automatic and temporary reOpeningeeiiii i 372
25.4.4 CompPletionut it 372
26 User Contributions............... 372
26.1 DeSCription . .« oottt e 373
26.2 Ut - oo e e e 373
26.2.1 Accessing On-Line Help.o e 373
26.2.2 Recompiling Functions. 373
26.2.3 Keyboard Definition......... .o i 375
26.2.4 Dumping Shell State. 375
26.2.5 Manipulating Hook Functions........... ... i i i 376
26.3 Remembering Recent Directories........ i 378
26.3.1 Installationc..iiiiii 378

26.3.2 USE. ettt 378

26.3.3 OPTIOIIS « vt ettt et e e e e e 378
26.3.4 Configuration.t 379
26.3.5 Use with dynamic directory naming............ i, 381
26.3.6 Details of directory handling.......... i i 381

26.4 Abbreviated dynamic references to directories............ i 381
26.4.1 USAZE « ettt et e 382
26.4.2 Configuration.t 382
26.4.3 Complete example e 383

26.5 Gathering information from version control systems.................. 384
26.5.1 Quickstart 385
26.5.2 Configuration. e 386
26.5.3 Oddities . ..o ottt e 392
26.5.4 QUIlt SUPPOTT - . ettt e 392
26.5.5 Function Descriptions (Public API) i 393
26.5.6 Variable Description 394
26.5.7 Hooks in ves_info 394
26.5.8 EXAIPIES . . 397

26.6 Prompt Themes e e 399
26.6.1 Imstallation e 399
26.6.2 Theme Selectionoou i e e 399
26.6.3 Utility Themest e 400
26.6.4 Writing Themeso e 400

26.7 ZLE FUNCEIONS . . .ottt ittt e e e 401
26.7.1 WidetS « o oottt 401
26.7.2 Utility Functions ... 418
26.7.8 SUYLES .ttt 419

26.8 Exception Handling ... 421
26.9 MIME FUnCHIONSottt 422
26.10 Mathematical Functions i e 427
26.11 User Configuration Functions........ i, 431
26.12 Other FUNCHIONSttt e e e e 431
26.12.1 DeSCriptions . ..ot e 431
26.12.2 Syl o 437
Concept Index ... 439
Variables Index 445
Options Index....... 449
Functions Index........... 456
Editor Functions Index............., 460

Style and Tag Index.......... i, 463

1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi
The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:

http://zsh.sourceforge.net/Doc/.
(The HTML version is produced with texi2html, which may be obtained from
http://www.nongnu.org/texi2html/. The command is ‘texi2html --output .

—--ifinfo --split=chapter --node-files zsh.texi’. If necessary, upgrade to
version 1.78 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, PDF, info and HTML formats) is available from the zsh archive site or its
mirrors, in the file zsh-doc.tar.gz. (See Section 2.2 [Availability], page 1, for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. It does not provide compatibility with POSIX or other shells in its default
operating mode: see the section Section 4.2 [Compatibility], page 7.

Zsh has command line editing, builtin spelling correction, programmable command completion,
shell functions (with autoloading), a history mechanism, and a host of other features.

2.1 Author

Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the
members of the zsh-workers mailing list <zsh-workers@zsh.org>. The development is cur-
rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at
<coordinator@zsh.org>, but matters relating to the code should generally go to the mailing
list.

2.2 Availability

Zsh is available from the following HTTP and anonymous FTP site.

ftp://ftp.zsh.org/pub/
https://www.zsh.org/pub/)

http://zsh.sourceforge.net/Doc/
http://www.nongnu.org/texi2html/
ftp://ftp.zsh.org/pub/
https://www.zsh.org/pub/

Chapter 2: Introduction 2

The up-to-date source code is available via Git from Sourceforge. See
https://sourceforge.net/projects/zsh/ for details. A summary of instructions
for the archive can be found at http://zsh.sourceforge.net/.

2.3 Mailing Lists
Zsh has 3 mailing lists:

<zsh-announce@zsh.org>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@zsh.org>
User discussions.

<zsh-workers@zsh.org>
Hacking, development, bug reports and patches.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@zsh.org>
<zsh-users—subscribe@zsh.org>
<zsh-workers—-subscribe@zsh.org>

<zsh-announce-unsubscribe@zsh.org>
<zsh-users-unsubscribe@zsh.org>
<zsh-workers—-unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail
to <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen
<karthy@kom.auc.dk>.

The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive, maintained by Geoff Wing <gcw@zsh.org>,
available at https://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list. The latest version can be found at any of the Zsh FTP
sites, or at http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<fagmaster@zsh.org>.

2.5 The Zsh Web Page

Zsh has a web page which is located at https://www.zsh.org/. This is maintained by Karsten
Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-related mat-
ters is <webmaster@zsh.org>.

https://sourceforge.net/projects/zsh/
http://zsh.sourceforge.net/
https://www.zsh.org/mla/
http://www.zsh.org/FAQ/
https://www.zsh.org/

Chapter 3: Roadmap 3

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at http://zsh.sourceforge.net/Guide/. At the time of writing, chapters dealing with
startup files and their contents and the new completion system were essentially complete.

2.7 See Also

man page sh(1), man page csh(1), man page tcsh(1), man page rc(1), man page bash(1), man
page ksh(1)

IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.

If no personal initialization files exist for the current user, a function is run to help you
change some of the most common settings. It won’t appear if your administrator has dis-
abled the zsh/newuser module. The function is designed to be self-explanatory. You can run
it by hand with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also
Section 26.11 [User Configuration Functions|, page 431.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor], page 161.

The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.

A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell
exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 88. Note that it’s currently only possible to read and write files saving history when
the shell is interactive, i.e. it does not work from scripts.

The shell now supports the UTF-8 character set (and also others if supported by the oper-
ating system). This is (mostly) handled transparently by the shell, but the degree of sup-
port in terminal emulators is variable. There is some discussion of this in the shell FAQ),
http://wuw.zsh.org/FAQ/. Note in particular that for combining characters to be handled
the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive to the
definition of the character set, note that if you are upgrading from an older version of the shell

http://zsh.sourceforge.net/Guide/
http://www.zsh.org/FAQ/

Chapter 3: Roadmap 4

you should ensure that the appropriate variable, either LANG (to affect all aspects of the shell’s
operation) or LC_CTYPE (to affect only the handling of character sets) is set to an appropriate
value. This is true even if you are using a single-byte character set including extensions of
ASCII such as IS0-8859-1 or I80-8859-15. See the description of LC_CTYPE in Chapter 15
[Parameters], page 75.

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.

Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.
The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 213.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern

functions for replacing strings or patterns globally in the command line
edit-command-line

edit the command line with an external editor.

See Section 26.7 [ZLE Functions], page 401, for descriptions of these.

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options|, page 97.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 64.

Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:

Chapter 4: Invocation 5

*x for matching over multiple directories
| for matching either of two alternatives

-, the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

... glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar]|, page 9.

One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion|, page 46. In zsh, you can either explicitly request the splitting (e.g.
${=fool}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters], page 76.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 22. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.

A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions]|, page 372. Features include:

promptinit
a prompt theme system for changing prompts easily, see Section 26.6 [Prompt
Themes|, page 399,

zZsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator
zargs a version of xargs that makes the find command redundant
zZmv a command for renaming files by means of shell patterns.

4 Invocation

4.1 Invocation

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.

Chapter 4: Invocation 6

-i Force shell to be interactive. It is still possible to specify a script to execute.

-s Force shell to read commands from the standard input. If the —s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

If there are any remaining arguments after option processing, and neither of the options -c or -s
was supplied, the first argument is taken as the file name of a script containing shell commands
to be executed. If the option PATH_SCRIPT is set, and the file name does not contain a directory
path (i.e. there is no ‘/’ in the name), first the current directory and then the command path
given by the variable PATH are searched for the script. If the option is not set or the file name
contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.

For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions|, page 97.

The long option ‘--emulate’ followed (in a separate word) by an emulation mode may be passed
to the shell. The emulation modes are those described for the emulate builtin, see Chapter 17
[Shell Builtin Commands|, page 123. The ‘--emulate’ option must precede any other options
(which might otherwise be overridden), but following options are honoured, so may be used
to modify the requested emulation mode. Note that certain extra steps are taken to ensure a
smooth emulation when this option is used compared with the emulate command within the
shell: for example, variables that conflict with POSIX usage such as path are not defined within
the shell.

Options may be specified by name using the -o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.

Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘=’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.

¢

The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘~-help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘=’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘=’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘-=’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’is
equivalent to ‘-x --"). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘~-shwordsplit’ is permitted and
does not end option processing.

Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘-=’, except that further single-letter options can be stacked
after the ‘-b’ and will take effect as normal.

Chapter 4: Invocation 7

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed
to stand for ‘restricted’), and if that is ‘b’, ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if
invoked as su (which happens on certain systems when the shell is executed by the su command),
the shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERQO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:

¢

e changing directories with the cd builtin

e changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE, IFS,
LD_AOUT_LIBRARY_PATH, LD_AOUT_PRELOAD, LD_LIBRARY_PATH, LD_PRELOAD,
MODULE_PATH, module_path, PATH, path, SHELL, UID and USERNAME parameters

e specifying command names containing /
e specifying command pathnames using hash
e redirecting output to files
e using the exec builtin command to replace the shell with another command
e using jobs -Z to overwrite the shell process’ argument and environment space
e using the ARGVO parameter to override argv[0] for external commands
e turning off restricted mode with set +r or unsetopt RESTRICTED
These restrictions are enforced after processing the startup files. The startup files should set

up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.

A shell Restricted Mode is an outdated way to restrict what users may do: modern systems have
better, safer and more reliable ways to confine user actions, such as chroot jails, containers and
zones.

A restricted shell is very difficult to implement safely. The feature may be removed in a future
version of zsh.

It is important to realise that the restrictions only apply to the shell, not to the commands it
runs (except for some shell builtins). While a restricted shell can only run the restricted list
of commands accessible via the predefined ‘PATH’ variable, it does not prevent those commands
from running any other command.

As an example, if ‘env’ is among the list of allowed commands, then it allows the user to run
any command as ‘env’ is not a shell builtin command and can run arbitrary executables.

So when implementing a restricted shell framework it is important to be fully aware of what
actions each of the allowed commands or features (which may be regarded as modules) can
perform.

Many commands can have their behaviour affected by environment variables. Except for the
few listed above, zsh does not restrict the setting of environment variables.

If a ‘perl’, ‘python’, ‘bash’, or other general purpose interpreted script it treated as a restricted
command, the user can work around the restriction by setting specially crafted ‘PERLSLIB’,
‘PYTHONPATH’, ‘BASHENV’ (etc.) environment variables. On GNU systems, any command can be
made to run arbitrary code when performing character set conversion (including zsh itself) by
setting a ‘GCONV_PATH’ environment variable. Those are only a few examples.

Bear in mind that, contrary to some other shells, ‘readonly’ is not a security feature in zsh as
it can be undone and so cannot be used to mitigate the above.

A restricted shell only works if the allowed commands are few and carefully written so as not to
grant more access to users than intended. It is also important to restrict what zsh module the
user may load as some of them, such as ‘zsh/system’, ‘zsh/mapfile’ and ‘zsh/files’, allow
bypassing most of the restrictions.

5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zshenv; this cannot be overridden. Subsequent behaviour
is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while the
second only affects global startup files (those shown here with an path starting with a /). If one
of the options is unset at any point, any subsequent startup file(s) of the corresponding type
will not be read. It is also possible for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS
and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login
shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zlogout are read. This
happens with either an explicit exit via the exit or logout commands, or an implicit exit by
reading end-of-file from the terminal. However, if the shell terminates due to exec’ing another
process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS options.
Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when the
shell exits, no history file will be saved.

Chapter 6: Shell Grammar 9

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another
directory, depending on the installation.

As /etc/zshenv is run for all instances of zsh, it is important that it be kept as small as possible.
In particular, it is a good idea to put code that does not need to be run for every single shell
behind a test of the form ‘if [[-o rcs]]; then ...’ so that it will not be executed when
zsh is invoked with the ‘-f’ option.

5.2 Files

$ZDOTDIR/ .zshenv
$ZDOTDIR/.zprofile

$ZDOTDIR/ .zshrc

$ZDOTDIR/.zlogin
$ZDOTDIR/.zlogout

${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zshenv

/etc/zprofile

/etc/zshrc

/etc/zlogin

/etc/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands|, page 123). If a compiled file exists (named for the original file plus the
.zwc extension) and it is newer than the original file, the compiled file will be used instead.

6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. For a description of assignment, see the beginning
of Chapter 15 [Parameters|, page 75.

The first word is the command to be executed, and the remaining words, if any, are arguments to
the command. If a command name is given, the parameter assignments modify the environment
of the command when it is executed. The value of a simple command is its exit status, or 128
plus the signal number if terminated by a signal. For example,

echo foo
is a simple command with arguments.

A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&. Where commands are separated by |’,
the standard output of the first command is connected to the standard input of the next. ‘|&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

Chapter 6: Shell Grammar 10

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.

If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the ‘>&p’ and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.
A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘||’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘| |’, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,
dmesg | grep panic && print yes
is a sublist consisting of two pipelines, the second just a simple command which will be executed
if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).
A list is a sequence of zero or more sublists, in which each sublist is terminated by ‘;’, ‘&’, ‘&|’,
‘&'’ or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...)" or ‘{...}’. When a sublist is terminated
by ¢;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘=’ prepended to its argv[0] string.

builtin The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [-pvV |
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [-cl] [-a argv0]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.

The -1 option is equivalent to the - precommand modifier, to treat the replacement
command as a login shell; the command is executed with a - prepended to its
argv [0] string. This flag has no effect if used together with the -a option.

Chapter 6: Shell Grammar 11

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGVO environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

6.3 Complex Commands
A complexr command in zsh is one of the following:

if list then list [elif list then list | ... [else list | fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [in word ... | term do list done
Expand the list of words, and set the parameter name to each of them in turn,
executing list each time. If the ‘in word’ is omitted, use the positional parameters
instead of the words.

The term consists of one or more newline or ; which terminate the words, and are
optional when the ‘in word’ is omitted.

More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for
in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (([exprl] ; [expr2] ; [expr3])) do list done
The arithmetic expression exprl is evaluated first (see Chapter 11 [Arithmetic Eval-
uation|, page 28). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
exprd evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
Execute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

The repeat syntax is disabled by default when the shell starts in a mode emulating
another shell. It can be enabled with the command ‘enable -r repeat’

case word in [[(] pattern | | pattern | ...) list (;;1;&l;1)] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation], page 64.

Chapter 6: Shell Grammar 12

Note further that, unless the SH_GLOB option is set, the whole pattern with alterna-
tives is treated by the shell as equivalent to a group of patterns within parentheses,
although white space may appear about the parentheses and the vertical bar and
will be stripped from the pattern at those points. White space may appear else-
where in the pattern; this is not stripped. If the SH_GLOB option is set, so that an
opening parenthesis can be unambiguously treated as part of the case syntax, the
expression is parsed into separate words and these are treated as strict alternatives
(as in other shells).

If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.

If the Iist that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not

re-expanded; all applicable patterns are tested with the same word.

select name [in word ... term | do list done

(list)

{ List }
{ try-list }

where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the
word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

Execute list in a subshell. Traps set by the trap builtin are reset to their default
values while executing list.

Execute list.

always { always-list }

First execute try-list. Regardless of errors, or break or continue commands en-
countered within try-list, execute always-list. Execution then continues from the
result of the execution of try-list; in other words, any error, or break or continue
command is treated in the normal way, as if always-list were not present. The two
chunks of code are referred to as the ‘try block’ and the ‘always block’.

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-list would cause the shell to
abort during parsing, so that always-list would not be executed, while an erroneous
substitution such as ${*foo*} would cause a run-time error, after which always-list
would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-list the value is irrelevant, but it is initialised
to —1. Inside always-list, the value is 1 if an error occurred in the try-list, else 0. If
TRY_BLOCK_ERROR is set to 0 during the always-list, the error condition caused by
the try-list is reset, and shell execution continues normally after the end of always-
list. Altering the value during the try-list is not useful (unless this forms part of an
enclosing always block).

Chapter 6: Shell Grammar 13

Regardless of TRY_BLOCK_ERROR, after the end of always-list the normal shell status
$7 is the value returned from try-list. This will be non-zero if there was an error,
even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
code which may cause an error
} always {
This code is executed regardless of the error.
(C TRY_BLOCK_ERROR = 0))
+

The error condition has been reset.

When a try block occurs outside of any function, a return or a exit encountered
in try-list does not cause the execution of always-list. Instead, the shell exits im-
mediately after any EXIT trap has been executed. Otherwise, a return command
encountered in try-list will cause the execution of always-list, just like break and
continue.

function word ... [() | [term | { Iist }
word ... () [term | { list }
word ... () [term | command

where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 22.

If the option SH_GLOB is set for compatibility with other shells, then whitespace may
appear between the left and right parentheses when there is a single word; otherwise,
the parentheses will be treated as forming a globbing pattern in that case.

In any of the forms above, a redirection may appear outside the function body, for
example

func() { ... } 2>&1
The redirection is stored with the function and applied whenever the function is

executed. Any variables in the redirection are expanded at the point the function
is executed, but outside the function scope.

time [pipeline]

[[exp 1]

The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions|, page 32, for a description of exp.

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These are non-standard and are likely
not to be obvious even to seasoned shell programmers; they should not be used anywhere that
portability of shell code is a concern.

The short versions below only work if sublist is of the form ‘{ list } or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[... 117 or ‘((...))’, else the end of the test
will not be recognized. For the for, repeat, case and select commands no such special form

Chapter 6: Shell Grammar 14

for the arguments is necessary, but the other condition (the special form of sublist or use of the
SHORT_LOOPS option) still applies.
if list { list } [elif list { list }] ... [else { list } |
An alternate form of if. The rules mean that
if [[-o ignorebraces 1] {
print yes
}
works, but
if true { # Does not work!
print yes
}

does not, since the test is not suitably delimited.

if list sublist
A short form of the alternate if. The same limitations on the form of list apply as
for the previous form.

for name ... (word ...) sublist
A short form of for.

for name ... [in word ... | term sublist
where term is at least one newline or ;. Another short form of for.

for (([exprl] ; [expr2] ; [expr3])) sublist
A short form of the arithmetic for command.

foreach name ... (word ...) list end
Another form of for.

while list { list }
An alternative form of while. Note the limitations on the form of list mentioned
above.

until list { list }

An alternative form of until. Note the limitations on the form of list mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { | [(] pattern [| pattern] ...) list (;;1;&l;1)] ... }
An alternative form of case.

select name | in word ... term] sublist
where term is at least one newline or ;. A short form of select.

function word ... [() | [term | sublist
This is a short form of function.

6.5 Reserved Words

The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[{ } declare export float integer local
readonly typeset

Additionally, ‘} is recognized in any position if neither the IGNORE_BRACES option nor the
IGNORE_CLOSE_BRACES option is set.

Chapter 6: Shell Grammar 15

6.6 Errors

Certain errors are treated as fatal by the shell: in an interactive shell, they cause control to
return to the command line, and in a non-interactive shell they cause the shell to be aborted.
In older versions of zsh, a non-interactive shell running a script would not abort completely, but
would resume execution at the next command to be read from the script, skipping the remainder
of any functions or shell constructs such as loops or conditions; this somewhat illogical behaviour
can be recovered by setting the option CONTINUE_ON_ERROR.

Fatal errors found in non-interactive shells include:
e Failure to parse shell options passed when invoking the shell
e Failure to change options with the set builtin
e Parse errors of all sorts, including failures to parse mathematical expressions

e Failures to set or modify variable behaviour with typeset, local, declare, export,
integer, float

e Execution of incorrectly positioned loop control structures (continue, break)
e Attempts to use regular expression with no regular expression module available
e Disallowed operations when the RESTRICTED options is set

e Failure to create a pipe needed for a pipeline

e Failure to create a multio

e Failure to autoload a module needed for a declared shell feature

e Errors creating command or process substitutions

e Syntax errors in glob qualifiers

e File generation errors where not caught by the option BAD_PATTERN

e All bad patterns used for matching within case statements

e File generation failures where not caused by NO_MATCH or similar options

e All file generation errors where the pattern was used to create a multio

e Memory errors where detected by the shell

e Invalid subscripts to shell variables

e Attempts to assign read-only variables

e Logical errors with variables such as assignment to the wrong type

e Use of invalid variable names

e Errors in variable substitution syntax

e Failure to convert characters in $’...° expressions

If the POSIX_BUILTINS option is set, more errors associated with shell builtin commands are
treated as fatal, as specified by the POSIX standard.

6.7 Comments

In non-interactive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set,
a word beginning with the third character of the histchars parameter (‘4 by default) causes
that word and all the following characters up to a newline to be ignored.

6.8 Aliasing

Every eligible word in the shell input is checked to see if there is an alias defined for it. If so,
it is replaced by the text of the alias if it is in command position (if it could be the first word
of a simple command), or if the alias is global. If the replacement text ends with a space, the

Chapter 6: Shell Grammar 16

next word in the shell input is always eligible for purposes of alias expansion. An alias is defined
using the alias builtin; global aliases may be defined using the —-g option to that builtin.

A word is defined as:
e Any plain string or glob pattern

e Any quoted string, using any quoting method (note that the quotes must be part of the
alias definition for this to be eligible)

e Any parameter reference or command substitution
e Any series of the foregoing, concatenated without whitespace or other tokens between them
e Any reserved word (case, do, else, etc.)

e With global aliasing, any command separator, any redirection operator, and ‘C’ or ‘)’ when
not part of a glob pattern

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting
part of the word, e.g. \foo. Any form of quoting works, although there is nothing to prevent
an alias being defined for the quoted form such as \foo as well.

When POSIX_ALIASES is set, only plain unquoted strings are eligible for aliasing. The alias
builtin does not reject ineligible aliases, but they are not expanded.

For use with completion, which would remove an initial backslash followed by a character that
isn’t special, it may be more convenient to quote the word by starting with a single quote, i.e.
’foo; completion will automatically add the trailing single quote.

6.8.1 Alias difficulties

Although aliases can be used in ways that bend normal shell syntax, not every string of non-
white-space characters can be used as an alias.

Any set of characters not listed as a word above is not a word, hence no attempt is made to
expand it as an alias, no matter how it is defined (i.e. via the builtin or the special parameter
aliases described in Section 22.20 [The zsh/parameter Module], page 311). However, as noted
in the case of POSIX_ALIASES above, the shell does not attempt to deduce whether the string
corresponds to a word at the time the alias is created.

For example, an expression containing an = at the start of a command line is an assignment and
cannot be expanded as an alias; a lone = is not an assignment but can only be set as an alias
using the parameter, as otherwise the = is taken part of the syntax of the builtin command.

It is not presently possible to alias the ‘((’ token that introduces arithmetic expressions, because
until a full statement has been parsed, it cannot be distinguished from two consecutive ‘ (’ tokens
introducing nested subshells. Also, if a separator such as && is aliased, \&& turns into the two
tokens \& and &, each of which may have been aliased separately. Similarly for \<<; \>|, etc.

There is a commonly encountered problem with aliases illustrated by the following code:
alias echobar=’echo bar’; echobar

This prints a message that the command echobar could not be found. This happens because
aliases are expanded when the code is read in; the entire line is read in one go, so that when
echobar is executed it is too late to expand the newly defined alias. This is often a problem in
shell scripts, functions, and code executed with ‘source’ or ‘.’. Consequently, use of functions
rather than aliases is recommended in non-interactive code.

Note also the unhelpful interaction of aliases and function definitions:

alias func=’noglob func’
func() {
echo Do something with $x*

Chapter 7: Redirection 17

}

Because aliases are expanded in function definitions, this causes the following command to be
executed:

noglob func() {
echo Do something with $*

}

which defines noglob as well as func as functions with the body given. To avoid this, either
quote the name func or use the alternative function definition form ‘function func’. Ensuring
the alias is defined after the function works but is problematic if the code fragment might be
re-executed.

6.9 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$’’ and ‘’’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘*’ character
can be included in the string by using the ‘\’’ escape.

All characters enclosed between a pair of single quotes (’?) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print 232
outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\” quotes the char-
acters ‘\’, <7, ‘"’ ‘¢’ and the first character of $histchars (default ‘!”).

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word Open file word for reading as standard input. It is an error to open a file in this
fashion if it does not exist.

<> word Open file word for reading and writing as standard input. If the file does not exist
then it is created.

> word Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

>| word
>! word Same as >, except that the file is truncated to zero length if it exists, regardless of
CLOBBER.

Chapter 7: Redirection 18

>> word

>>| word
>>1 word

<<[-] word

<<< word

<& number
>& number

<& -

<& p
>k p

>& word
&> word

>&| word
>&! word
&> | word
&>! word

>>& word
&>> word

Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER and APPEND_CREATE options are both unset, this causes an
error; otherwise, the file is created.

Same as >>, except that the file is created if it does not exist, regardless of CLOBBER
and APPEND_CREATE.

The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.

If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, *“” and the first character of word.

Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes
in the form $’...” have their standard effect of expanding backslashed references to
special characters.

If <<~ is used, then all leading tabs are stripped from word and from the document.
Perform shell expansion on word and pass the result to standard input. This is

known as a here-string. Compare the use of word in here-documents above, where
word does not undergo shell expansion.

The standard input/output is duplicated from file descriptor number (see man page
dup2(2)).

Close the standard input/output.
The input/output from/to the coprocess is moved to the standard input/output.

(Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be
used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of ‘> word’. Note that this does not have the same
effect as ‘> word 2>&1’ in the presence of multios (see the section below).

Redirects both standard output and standard error (file descriptor 2) in the manner
of *>| word’.

Redirects both standard output and standard error (file descriptor 2) in the manner
of *>> word’.

Chapter 7: Redirection 19

>>&| word
>>&! word
&>>| word

&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of *>>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

. 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

The ‘1& command separator described in Section 6.1 [Simple Commands & Pipelines|, page 9,
is a shorthand for ‘2>&1 |’.

The various forms of process substitution, ‘<(list)’, and ‘=(list)’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution], page 45.

7.1 Opening file descriptors using parameters

When the shell is parsing arguments to a command, and the shell option IGNORE_BRACES is
not set, a different form of redirection is allowed: instead of a digit before the operator there
is a valid shell identifier enclosed in braces. The shell will open a new file descriptor that is
guaranteed to be at least 10 and set the parameter named by the identifier to the file descriptor
opened. No whitespace is allowed between the closing brace and the redirection character. For
example:

.. {myfd}>&1

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor
can be written to using the syntax >&$myfd. The file descriptor remains open in subshells and
forked external executables.

The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.

It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.

If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.

Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an
argument to exec. The syntax does not in any case work when used around complex commands
such as parenthesised subshells or loops, where the opening brace is interpreted as part of a
command list to be executed in the current shell.

Chapter 7: Redirection 20

The following shows a typical sequence of allocation, use, and closing of a file descriptor:
integer myfd
exec {myfd}>~/logs/mylogfile.txt
print This is a log message. >&$myfd
exec {myfd}>&-

Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.

7.2 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar

writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat
writes the date to the file ‘foo’, and also pipes it to cat.

Note that the shell opens all the files to be used in the multio process immediately, not at the
point they are about to be written.

Note also that redirections are always expanded in order. This happens regardless of the setting
of the MULTIOS option, but with the option in effect there are additional consequences. For
example, the meaning of the expression >&1 will change after a previous redirection:

date >&1 >output

In the case above, the >&1 refers to the standard output at the start of the line; the result is
similar to the tee command. However, consider:

date >output >&1

As redirections are evaluated in order, when the >&1 is encountered the standard output is set
to the file output and another copy of the output is therefore sent to that file. This is unlikely
to be what is intended.

If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus

T > %
will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> *.sh

If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, provided the MULTIOS option is set. It should be noted that each file is opened
immediately, not at the point where it is about to be read: this behaviour differs from cat, so
if strictly standard behaviour is needed, cat should be used instead.

Thus

sort <foo <fubar
or even

sort <f{oo,ubar}

is equivalent to ‘cat foo fubar | sort’.

Chapter 8: Command Execution 21

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus
cat bar | sort <foo
is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).

If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so

echo Hello > bar > baz
when MULTIOS is unset will truncate ‘bar’, and write ‘Hello’ into ‘baz’.

There is a problem when an output multio is attached to an external program. A simple example
shows this:

cat file >filel >file2

cat filel file2
Here, it is possible that the second ‘cat’ will not display the full contents of filel and file2
(i.e. the original contents of file repeated twice).
The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before filel and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2

Here, the {...} job will pause to wait for both files to be written.

7.3 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.

If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.

If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.

Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.

8 Command Execution

If & command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions|, page 22.
If there exists a shell builtin by that name, the builtin is invoked.

Otherwise, the shell searches each element of $path for a directory containing an executable
file by that name. If the search is unsuccessful, the shell prints an error message and returns a
nonzero exit status.

If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning

22

with ‘#!’, the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.

If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line arguments. The return status of the function
becomes the status of the command. If the function wishes to mimic the behaviour of the shell
when the command is not found, it should print the message ‘command not found: cmd’ to
standard error and return status 127. Note that the handler is executed in a subshell forked
to execute an external command, hence changes to directories, shell parameters, etc. have no
effect on the main shell.

9 Functions

Shell functions are defined with the function reserved word or the special syntax ‘funcname
()’. Shell functions are read in and stored internally. Alias names are resolved when the
function is read. Functions are executed like commands with the arguments passed as positional
parameters. (See Chapter 8 [Command Execution], page 21.)

Functions execute in the same process as the caller and share all files and present working
directory with the caller. A trap on EXIT set inside a function is executed after the function
completes in the environment of the caller.

The return builtin is used to return from function calls.

Function identifiers can be listed with the functions builtin. Functions can be undefined with
the unfunction builtin.

9.1 Autoloading Functions

A function can be marked as undefined using the autoload builtin (or ‘functions -u’ or ‘type-
set —-fu’). Such a function has no body. When the function is first executed, the shell searches
for its definition using the elements of the fpath variable. Thus to define functions for autoload-
ing, a typical sequence is:

fpath=("/myfuncs $fpath)
autoload myfuncl myfunc2 ...

The usual alias expansion during reading will be suppressed if the autoload builtin or its
equivalent is given the option -U. This is recommended for the use of functions supplied with
the zsh distribution. Note that for functions precompiled with the zcompile builtin command
the flag -U must be provided when the .zwc file is created, as the corresponding information is
compiled into the latter.

For each element in fpath, the shell looks for three possible files, the newest of which is used to
load the definition for the function:

element . zwc
A file created with the zcompile builtin command, which is expected to contain the
definitions for all functions in the directory named element. The file is treated in
the same manner as a directory containing files for functions and is searched for the
definition of the function. If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.

If element already includes a .zwc extension (i.e. the extension was explicitly
given by the user), element is searched for the definition of the function without
comparing its age to that of other files; in fact, there does not need to be any

Chapter 9: Functions 23

directory named element without the suffix. Thus including an element such as
‘/usr/local/funcs.zwc’ in fpath will speed up the search for functions, with the
disadvantage that functions included must be explicitly recompiled by hand before
the shell notices any changes.

element/ function . zwc
A file created with zcompile, which is expected to contain the definition for function.
It may include other function definitions as well, but those are neither loaded nor
executed; a file found in this way is searched only for the definition of function.

element/function
A file of zsh command text, taken to be the definition for function.

In summary, the order of searching is, first, in the parents of directories in fpath for the newer
of either a compiled directory or a directory in £fpath; second, if more than one of these contains
a definition for the function that is sought, the leftmost in the fpath is chosen; and third, within
a directory, the newer of either a compiled function or an ordinary function definition is used.

If the KSH_AUTOLOAD option is set, or the file contains only a simple definition of the function,
the file’s contents will be executed. This will normally define the function in question, but may
also perform initialization, which is executed in the context of the function execution, and may
therefore define local parameters. It is an error if the function is not defined by loading the file.

Otherwise, the function body (with no surrounding ‘funcname () {...}’) is taken to be the com-
plete contents of the file. This form allows the file to be used directly as an executable shell
script. If processing of the file results in the function being re-defined, the function itself is not
re-executed. To force the shell to perform initialization and then call the function defined, the
file should contain initialization code (which will be executed then discarded) in addition to a
complete function definition (which will be retained for subsequent calls to the function), and a
call to the shell function, including any arguments, at the end.

For example, suppose the autoload file func contains

func() { print This is func; }

print func is initialized
then ‘func; func’ with KSH_AUTOLOAD set will produce both messages on the first call, but only
the message ‘This is func’ on the second and subsequent calls. Without KSH_AUTOLOAD set,
it will produce the initialization message on the first call, and the other message on the second
and subsequent calls.
It is also possible to create a function that is not marked as autoloaded, but which loads its own
definition by searching fpath, by using ‘autoload -X’ within a shell function. For example, the
following are equivalent:

myfunc() {

autoload -X
}

myfunc args...
and

unfunction myfunc # if myfunc was defined
autoload myfunc
myfunc args...

In fact, the functions command outputs ‘builtin autoload -X’ as the body of an autoloaded
function. This is done so that

eval "$(functions)"
produces a reasonable result. A true autoloaded function can be identified by the presence
of the comment ‘# undefined’ in the body, because all comments are discarded from defined
functions.

Chapter 9: Functions 24

To load the definition of an autoloaded function myfunc without executing myfunc, use:

autoload +X myfunc

9.2 Anonymous Functions

If no name is given for a function, it is ‘anonymous’ and is handled specially. Either form of
function definition may be used: a ‘()’ with no preceding name, or a ‘function’ with an im-
mediately following open brace. The function is executed immediately at the point of definition
and is not stored for future use. The function name is set to ‘(anon)’.

Arguments to the function may be specified as words following the closing brace defining the
function, hence if there are none no arguments (other than $0) are set. This is a difference
from the way other functions are parsed: normal function definitions may be followed by certain
keywords such as ‘else’ or ‘fi’, which will be treated as arguments to anonymous functions, so
that a newline or semicolon is needed to force keyword interpretation.

Note also that the argument list of any enclosing script or function is hidden (as would be the
case for any other function called at this point).

Redirections may be applied to the anonymous function in the same manner as to a current-shell
structure enclosed in braces. The main use of anonymous functions is to provide a scope for
local variables. This is particularly convenient in start-up files as these do not provide their own
local variable scope.

For example,

variable=outside
function {
local variable=inside
print "I am $variable with arguments $x"
} this and that
print "I am $variable"

outputs the following:

I am inside with arguments this and that
I am outside

Note that function definitions with arguments that expand to nothing, for example ‘name=;
function $name { ... }’, are not treated as anonymous functions. Instead, they are treated as
normal function definitions where the definition is silently discarded.

9.3 Special Functions

Certain functions, if defined, have special meaning to the shell.

9.3.1 Hook Functions

For the functions below, it is possible to define an array that has the same name as the func-
tion with ‘_functions’ appended. Any element in such an array is taken as the name of a
function to execute; it is executed in the same context and with the same arguments as the
basic function. For example, if $chpwd_functions is an array containing the values ‘mychpwd’,
‘chpwd_save_dirstack’, then the shell attempts to execute the functions ‘chpwd’, ‘mychpwd’
and ‘chpwd_save_dirstack’, in that order. Any function that does not exist is silently ignored.
A function found by this mechanism is referred to elsewhere as a ‘hook function’. An error in
any function causes subsequent functions not to be run. Note further that an error in a precmd

Chapter 9: Functions 25

hook causes an immediately following periodic function not to run (though it may run at the
next opportunity).

chpwd

periodic

precmd

preexec

Executed whenever the current working directory is changed.

If the parameter PERIOD is set, this function is executed every $PERIOD seconds,
just before a prompt. Note that if multiple functions are defined using the array
periodic_functions only one period is applied to the complete set of functions,
and the scheduled time is not reset if the list of functions is altered. Hence the set
of functions is always called together.

Executed before each prompt. Note that precommand functions are not re-executed
simply because the command line is redrawn, as happens, for example, when a
notification about an exiting job is displayed.

Executed just after a command has been read and is about to be executed. If the
history mechanism is active (regardless of whether the line was discarded from the
history buffer), the string that the user typed is passed as the first argument, oth-
erwise it is an empty string. The actual command that will be executed (including
expanded aliases) is passed in two different forms: the second argument is a single-
line, size-limited version of the command (with things like function bodies elided);
the third argument contains the full text that is being executed.

zshaddhistory

zshexit

Executed when a history line has been read interactively, but before it is executed.
The sole argument is the complete history line (so that any terminating newline will
still be present).

If any of the hook functions returns status 1 (or any non-zero value other than 2,
though this is not guaranteed for future versions of the shell) the history line will not
be saved, although it lingers in the history until the next line is executed, allowing
you to reuse or edit it immediately.

If any of the hook functions returns status 2 the history line will be saved on the
internal history list, but not written to the history file. In case of a conflict, the first
non-zero status value is taken.

A hook function may call ‘fc -p ...” to switch the history context so that the history
is saved in a different file from the that in the global HISTFILE parameter. This is
handled specially: the history context is automatically restored after the processing
of the history line is finished.

The following example function works with one of the options INC_APPEND_HISTORY
or SHARE_HISTORY set, in order that the line is written out immediately after the
history entry is added. It first adds the history line to the normal history with the
newline stripped, which is usually the correct behaviour. Then it switches the history
context so that the line will be written to a history file in the current directory.
zshaddhistory() {
print -sr —- ${1%%$’\n’}
fc -p .zsh_local_history
}

Executed at the point where the main shell is about to exit normally. This is not
called by exiting subshells, nor when the exec precommand modifier is used before
an external command. Also, unlike TRAPEXIT, it is not called when functions exit.

9.3.2 Trap Functions

The functions below are treated specially but do not have corresponding hook arrays.

Chapter 9: Functions 26

TRAPNAL If defined and non-null, this function will be executed whenever the shell catches a
signal SIGNAL, where NAL is a signal name as specified for the kill builtin. The
signal number will be passed as the first parameter to the function.

If a function of this form is defined and null, the shell and processes spawned by it
will ignore SIGNAL.

The return status from the function is handled specially. If it is zero, the signal is
assumed to have been handled, and execution continues normally. Otherwise, the
shell will behave as interrupted except that the return status of the trap is retained.

Programs terminated by uncaught signals typically return the status 128 plus the
signal number. Hence the following causes the handler for SIGINT to print a message,
then mimic the usual effect of the signal.

TRAPINT() {
print "Caught SIGINT, aborting."
return $((128 + $1))

}

The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never executed inside other
traps.

TRAPDEBUG
If the option DEBUG_BEFORE_CMD is set (as it is by default), executed before each
command; otherwise executed after each command. See the description of the trap
builtin in Chapter 17 [Shell Builtin Commands], page 123, for details of additional
features provided in debug traps.

TRAPEXIT Executed when the shell exits, or when the current function exits if defined inside a
function. The value of $7 at the start of execution is the exit status of the shell or
the return status of the function exiting.

TRAPZERR Executed whenever a command has a non-zero exit status. However, the function
is not executed if the command occurred in a sublist followed by ‘&&’ or ‘| |’; only
the final command in a sublist of this type causes the trap to be executed. The
function TRAPERR acts the same as TRAPZERR on systems where there is no SIGERR
(this is the usual case).

The functions beginning ‘TRAP’ may alternatively be defined with the trap builtin: this may be
preferable for some uses. Setting a trap with one form removes any trap of the other form for
the same signal; removing a trap in either form removes all traps for the same signal. The forms
TRAPNAL() {
code
}
(’function traps’) and
trap °’
code
> NAL

(’list traps’) are equivalent in most ways, the exceptions being the following:

e Function traps have all the properties of normal functions, appearing in the list of functions
and being called with their own function context rather than the context where the trap
was triggered.

e The return status from function traps is special, whereas a return from a list trap causes
the surrounding context to return with the given status.

e Function traps are not reset within subshells, in accordance with zsh behaviour; list traps
are reset, in accordance with POSIX behaviour.

27

10 Jobs & Signals

10.1 Jobs

If the MONITOR option is set, an interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns them small integer numbers.
When a job is started asynchronously with ‘&’, the shell prints a line to standard error which
looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had one (top-
level) process, whose process ID was 1234.

If a job is started with ‘|’ or ‘&!’, then that job is immediately disowned. After startup, it does
not have a place in the job table, and is not subject to the job control features described here.

If you are running a job and wish to do something else you may hit the key ~Z (control-Z)
which sends a TSTP signal to the current job: this key may be redefined by the susp option
of the external stty command. The shell will then normally indicate that the job has been
‘suspended’, and print another prompt. You can then manipulate the state of this job, putting
it in the background with the bg command, or run some other commands and then eventually
bring the job back into the foreground with the foreground command fg. A ~Z takes effect
immediately and is like an interrupt in that pending output and unread input are discarded
when it is typed.

A job being run in the background will suspend if it tries to read from the terminal.

Note that if the job running in the foreground is a shell function, then suspending it will have
the effect of causing the shell to fork. This is necessary to separate the function’s state from
that of the parent shell performing the job control, so that the latter can return to the command
line prompt. As a result, even if fg is used to continue the job the function will no longer be
part of the parent shell, and any variables set by the function will not be visible in the parent
shell. Thus the behaviour is different from the case where the function was never suspended.
Zsh is different from many other shells in this regard.

One additional side effect is that use of disown with a job created by suspending shell code in
this fashion is delayed: the job can only be disowned once any process started from the parent
shell has terminated. At that point, the disowned job disappears silently from the job list.

The same behaviour is found when the shell is executing code as the right hand side of a pipeline
or any complex shell construct such as if, for, etc., in order that the entire block of code can be
managed as a single job. Background jobs are normally allowed to produce output, but this can
be disabled by giving the command ‘stty tostop’. If you set this tty option, then background
jobs will suspend when they try to produce output like they do when they try to read input.

When a command is suspended and continued later with the fg or wait builtins, zsh restores
tty modes that were in effect when it was suspended. This (intentionally) does not apply if the
command is continued via ‘kill -CONT’, nor when it is continued with bg.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID
of any process of the job or by one of the following;:

%number The job with the given number.

hstring The last job whose command line begins with string.
%7string The last job whose command line contains string.

YA Current job.

yAS Equivalent to ‘%%’.

Chapter 11: Arithmetic Evaluation 28

Ve Previous job.

The shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible. If the NOTIFY option is not
set, it waits until just before it prints a prompt before it informs you. All such notifications are
sent directly to the terminal, not to the standard output or standard error.

When the monitor mode is on, each background job that completes triggers any trap set for
CHLD.

When you try to leave the shell while jobs are running or suspended, you will be warned that
‘You have suspended (running) jobs’. You may use the jobs command to see what they are.
If you do this or immediately try to exit again, the shell will not warn you a second time; the
suspended jobs will be terminated, and the running jobs will be sent a SIGHUP signal, if the HUP
option is set.

To avoid having the shell terminate the running jobs, either use the nohup command (see man
page nohup(1)) or the disown builtin.

10.2 Signals

The INT and QUIT signals for an invoked command are ignored if the command is followed by ‘&’
and the MONITOR option is not active. The shell itself always ignores the QUIT signal. Otherwise,
signals have the values inherited by the shell from its parent (but see the TRAPNAL special
functions in Chapter 9 [Functions], page 22).

Certain jobs are run asynchronously by the shell other than those explicitly put into the back-
ground; even in cases where the shell would usually wait for such jobs, an explicit exit command
or exit due to the option ERR_EXIT will cause the shell to exit without waiting. Examples of such
asynchronous jobs are process substitution, see Section 14.2 [Process Substitution], page 45, and
the handler processes for multios, see the section Multios in Chapter 7 [Redirection], page 17.

11 Arithmetic Evaluation

The shell can perform integer and floating point arithmetic, either using the builtin let, or via
a substitution of the form $((...)). For integers, the shell is usually compiled to use 8-byte
precision where this is available, otherwise precision is 4 bytes. This can be tested, for example,
by giving the command ‘print - $((12345678901))’; if the number appears unchanged,
the precision is at least 8 bytes. Floating point arithmetic always uses the ‘double’ type with
whatever corresponding precision is provided by the compiler and the library.

The let builtin command takes arithmetic expressions as arguments; each is evaluated sepa-
rately. Since many of the arithmetic operators, as well as spaces, require quoting, an alternative
form is provided: for any command which begins with a ‘((’, all the characters until a matching
))’ are treated as a quoted expression and arithmetic expansion performed as for an argument of
let. More precisely, ‘((...))’" is equivalent to ‘let "..."’. The return status is 0 if the arithmetic
value of the expression is non-zero, 1 if it is zero, and 2 if an error occurred.

For example, the following statement
(Cval =2 + 1))
is equivalent to
let "val = 2 + 1"
both assigning the value 3 to the shell variable val and returning a zero status.

Integers can be in bases other than 10. A leading ‘0x’ or ‘0X’ denotes hexadecimal and a leading
‘Ob’ or ‘OB’ binary. Integers may also be of the form ‘base#n’, where base is a decimal number
between two and thirty-six representing the arithmetic base and n is a number in that base (for

Chapter 11: Arithmetic Evaluation 29

example, ‘16#ff’ is 255 in hexadecimal). The base# may also be omitted, in which case base 10
is used. For backwards compatibility the form ‘[base]ln’ is also accepted.

An integer expression or a base given in the form ‘base#n’ may contain underscores (‘_’) after

the leading digit for visual guidance; these are ignored in computation. Examples are 1_000_000
or Oxffff_ffff which are equivalent to 1000000 and Oxffffffff respectively.

It is also possible to specify a base to be used for output in the form ‘[#base]’, for example
‘[#16]°. This is used when outputting arithmetical substitutions or when assigning to scalar
parameters, but an explicitly defined integer or floating point parameter will not be affected. If
an integer variable is implicitly defined by an arithmetic expression, any base specified in this
way will be set as the variable’s output arithmetic base as if the option ‘-i base’ to the typeset
builtin had been used. The expression has no precedence and if it occurs more than once in
a mathematical expression, the last encountered is used. For clarity it is recommended that it
appear at the beginning of an expression. As an example:

typeset -i 16 y

print $(([#8] x = 32, y = 32))

print $x $y

outputs first ‘8#40°, the rightmost value in the given output base, and then ‘8#40 16#20’,
because y has been explicitly declared to have output base 16, while x (assuming it does not

already exist) is implicitly typed by the arithmetic evaluation, where it acquires the output base
8.

The base may be replaced or followed by an underscore, which may itself be followed by a
positive integer (if it is missing the value 3 is used). This indicates that underscores should be
inserted into the output string, grouping the number for visual clarity. The following integer
specifies the number of digits to group together. For example:

setopt cbases
print $(([#16_4] 65536 **x 2))

outputs ‘0x1_0000_0000’.

The feature can be used with floating point numbers, in which case the base must be omitted;
grouping is away from the decimal point. For example,

zmodload zsh/mathfunc
print $(C [#_] sqrt(le7)))
outputs ‘3_162.277_660_168_379_5" (the number of decimal places shown may vary).

If the C_BASES option is set, hexadecimal numbers are output in the standard C format, for
example ‘OxFF’ instead of the usual ‘16#FF’. If the option OCTAL_ZEROES is also set (it is not
by default), octal numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’.
This option has no effect on the output of bases other than hexadecimal and octal, and these
formats are always understood on input.

When an output base is specified using the ‘ [#base]’ syntax, an appropriate base prefix will be
output if necessary, so that the value output is valid syntax for input. If the # is doubled, for
example ‘[##16]°, then no base prefix is output.

Floating point constants are recognized by the presence of a decimal point or an exponent. The
decimal point may be the first character of the constant, but the exponent character e or E may
not, as it will be taken for a parameter name. All numeric parts (before and after the decimal
point and in the exponent) may contain underscores after the leading digit for visual guidance;
these are ignored in computation.

An arithmetic expression uses nearly the same syntax and associativity of expressions as in C.

In the native mode of operation, the following operators are supported (listed in decreasing
order of precedence):

Chapter 11: Arithmetic Evaluation 30

+ =1 7 4t -
unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement
<< >> bitwise shift left, right
& bitwise AND
- bitwise XOR
| bitwise OR
*% exponentiation
* /% multiplication, division, modulus (remainder)
+ - addition, subtraction
<> <= >=
comparison

== I= equality and inequality
&& logical AND
[l - logical OR, XOR

? ternary operator
= += —= x= [= Y= &= "= |= <<= >>= &&= ||= "= *x=
assignment
, comma operator
The operators ‘&&’, ‘I |’, ‘&&=", and ‘| |=" are short-circuiting, and only one of the latter two

expressions in a ternary operator is evaluated. Note the precedence of the bitwise AND, OR,
and XOR operators.

With the option C_PRECEDENCES the precedences (but no other properties) of the operators are
altered to be the same as those in most other languages that support the relevant operators:
+ -7 o+ -

unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement

*% exponentiation
x /% multiplication, division, modulus (remainder)
+ - addition, subtraction
<< >> bitwise shift left, right
<> <= >=
comparison

== I= equality and inequality
bitwise AND

bitwise XOR

| bitwise OR

&& logical AND

e logical XOR

'l logical OR

&

)

? ternary operator

Chapter 11: Arithmetic Evaluation 31

assignment

s comma operator

Note the precedence of exponentiation in both cases is below that of unary operators, hence
‘-3**x2’ evaluates as ‘9’, not ‘-9’. Use parentheses where necessary: ‘-(3**2)’. This is for

compatibility with other shells.

Mathematical functions can be called with the syntax ‘func(args)’, where the function decides
if the args is used as a string or a comma-separated list of arithmetic expressions. The shell
currently defines no mathematical functions by default, but the module zsh/mathfunc may be
loaded with the zmodload builtin to provide standard floating point mathematical functions.

An expression of the form ‘##x’ where x is any character sequence such as ‘a’, ‘"A’, or ‘\M-\C-x’
gives the value of this character and an expression of the form ‘#name’ gives the value of the
first character of the contents of the parameter name. Character values are according to the
character set used in the current locale; for multibyte character handling the option MULTIBYTE
must be set. Note that this form is different from ‘$#name’, a standard parameter substitution
which gives the length of the parameter name. ‘#\’ is accepted instead of ‘##’, but its use is
deprecated.

Named parameters and subscripted arrays can be referenced by name within an arithmetic
expression without using the parameter expansion syntax. For example,

((val2 = vall * 2))
assigns twice the value of $vall to the parameter named val2.

An internal integer representation of a named parameter can be specified with the integer
builtin. Arithmetic evaluation is performed on the value of each assignment to a named param-
eter declared integer in this manner. Assigning a floating point number to an integer results in
rounding towards zero.

Likewise, floating point numbers can be declared with the float builtin; there are two types,
differing only in their output format, as described for the typeset builtin. The output format
can be bypassed by using arithmetic substitution instead of the parameter substitution, i.e.
‘${float}’ uses the defined format, but ‘$((float))’ uses a generic floating point format.

Promotion of integer to floating point values is performed where necessary. In addition, if any
operator which requires an integer (‘&’, ‘1’, ‘*’, ‘<<’, *>>’ and their equivalents with assignment)
is given a floating point argument, it will be silently rounded towards zero except for ‘=’ which
rounds down.

Users should beware that, in common with many other programming languages but not software
designed for calculation, the evaluation of an expression in zsh is taken a term at a time and
promotion of integers to floating point does not occur in terms only containing integers. A
typical result of this is that a division such as 6/8 is truncated, in this being rounded towards 0.
The FORCE_FLOAT shell option can be used in scripts or functions where floating point evaluation
is required throughout.

Scalar variables can hold integer or floating point values at different times; there is no memory
of the numeric type in this case.

If a variable is first assigned in a numeric context without previously being declared, it will be
implicitly typed as integer or float and retain that type either until the type is explicitly
changed or until the end of the scope. This can have unforeseen consequences. For example, in
the loop

for ((£f=0; f<1; f +=0.1)); do
use $f
done

32

if £ has not already been declared, the first assignment will cause it to be created as an integer,
and consequently the operation ‘f += 0.1’ will always cause the result to be truncated to zero,
so that the loop will fail. A simple fix would be to turn the initialization into ‘f = 0.0’. It is
therefore best to declare numeric variables with explicit types.

12 Conditional Expressions

A conditional expression is used with the [[compound command to test attributes of files and
to compare strings. Each expression can be constructed from one or more of the following unary
or binary expressions:

-a file true if file exists.

-b file true if file exists and is a block special file.

-c file true if file exists and is a character special file.
-d file true if file exists and is a directory.

-e file true if file exists.

-f file true if file exists and is a regular file.

-g file true if file exists and has its setgid bit set.

-h file true if file exists and is a symbolic link.

-k file true if file exists and has its sticky bit set.

-n string true if length of string is non-zero.
-o option true if option named option is on. option may be a single character, in which case
it is a single letter option name. (See Section 16.1 [Specifying Options], page 97.)

When no option named option exists, and the POSIX_BUILTINS option hasn’t been
set, return 3 with a warning. If that option is set, return 1 with no warning.

-p file true if file exists and is a FIFO special file (named pipe).

-r file true if file exists and is readable by current process.

-s file true if file exists and has size greater than zero.

-t fd true if file descriptor number fd is open and associated with a terminal device. (note:

fd is not optional)
-u file true if file exists and has its setuid bit set.

-V varname
true if shell variable varname is set.

-w file true if file exists and is writable by current process.

-x file true if file exists and is executable by current process. If file exists and is a directory,
then the current process has permission to search in the directory.

-z string true if length of string is zero.

-L file true if file exists and is a symbolic link.
-0 file true if file exists and is owned by the effective user ID of this process.
-G file true if file exists and its group matches the effective group ID of this process.

-S file true if file exists and is a socket.

Chapter 12: Conditional Expressions 33

-N file

true if file exists and its access time is not newer than its modification time.

filel -nt file2

true if filel exists and is newer than file2.

filel -ot file2

true if filel exists and is older than file2.

filel —ef file2

true if filel and file2 exist and refer to the same file.

string = pattern
string == pattern

true if string matches pattern. The two forms are exactly equivalent. The ‘=’ form
is the traditional shell syntax (and hence the only one generally used with the test
and [builtins); the ‘==" form provides compatibility with other sorts of computer
language.

string != pattern

true if string does not match pattern.

string =" regexp

true if string matches the regular expression regexp. If the option RE_MATCH_PCRE is
set regexp is tested as a PCRE regular expression using the zsh/pcre module, else
it is tested as a POSIX extended regular expression using the zsh/regex module.
Upon successful match, some variables will be updated; no variables are changed if
the matching fails.

If the option BASH_REMATCH is not set the scalar parameter MATCH is set to the
substring that matched the pattern and the integer parameters MBEGIN and MEND to
the index of the start and end, respectively, of the match in string, such that if string
is contained in variable var the expression ‘${var [$MBEGIN, $MEND] }’ is identical to
‘$MATCH’. The setting of the option KSH_ARRAYS is respected. Likewise, the array
match is set to the substrings that matched parenthesised subexpressions and the
arrays mbegin and mend to the indices of the start and end positions, respectively, of
the substrings within string. The arrays are not set if there were no parenthesised
subexpressions. For example, if the string ‘a short string’ is matched against
the regular expression ‘s(...)t’, then (assuming the option KSH_ARRAYS is not set)
MATCH, MBEGIN and MEND are ‘short’, 3 and 7, respectively, while match, mbegin and
mend are single entry arrays containing the strings ‘hor’, ‘4’ and ‘6’, respectively.

If the option BASH_REMATCH is set the array BASH_REMATCH is set to the substring
that matched the pattern followed by the substrings that matched parenthesised
subexpressions within the pattern.

stringl < string2

true if stringl comes before string2 based on ASCII value of their characters.

stringl > string2

true if stringl comes after string2 based on ASCII value of their characters.

expl -eq exp2

true if expl is numerically equal to exp2. Note that for purely numeric comparisons
use of the ((...)) builtin described in Chapter 11 [Arithmetic Evaluation|, page 28,
is more convenient than conditional expressions.

expl —-ne exp2

true if expl is numerically not equal to exp2.

Chapter 12: Conditional Expressions 34

expl -1t exp2
true if expl is numerically less than exp?2.

expl -gt exp2
true if expl is numerically greater than exp2.

expl -le exp?2
true if expl is numerically less than or equal to exp2.

expl -ge exp2
true if expl is numerically greater than or equal to exp2.

(exp) true if exp is true.
I exp true if exp is false.

expl && exp2
true if expl and exp2 are both true.

expl || exp2
true if either expl or exp2 is true.

For compatibility, if there is a single argument that is not syntactically significant, typically a
variable, the condition is treated as a test for whether the expression expands as a string of
non-zero length. In other words, [[$var 1] is the same as [[-n $var 1]. It is recommended
that the second, explicit, form be used where possible.

Normal shell expansion is performed on the file, string and pattern arguments, but the result of
each expansion is constrained to be a single word, similar to the effect of double quotes.

Filename generation is not performed on any form of argument to conditions. However, it can
be forced in any case where normal shell expansion is valid and when the option EXTENDED_GLOB
is in effect by using an explicit glob qualifier of the form (#q) at the end of the string. A
normal glob qualifier expression may appear between the ‘q’ and the closing parenthesis; if
none appears the expression has no effect beyond causing filename generation. The results of
filename generation are joined together to form a single word, as with the results of other forms
of expansion.

This special use of filename generation is only available with the [[syntax. If the condition
occurs within the [or test builtin commands then globbing occurs instead as part of normal
command line expansion before the condition is evaluated. In this case it may generate multiple
words which are likely to confuse the syntax of the test command.

For example,
[[-n filex(#qN) 1]
produces status zero if and only if there is at least one file in the current directory beginning

with the string ‘file’. The globbing qualifier N ensures that the expression is empty if there is
no matching file.

Pattern metacharacters are active for the pattern arguments; the patterns are the same as those
used for filename generation, see Section 14.8 [Filename Generation], page 64, but there is no
special behaviour of ‘/’ nor initial dots, and no glob qualifiers are allowed.

In each of the above expressions, if file is of the form ‘/dev/fd/n’, where n is an integer, then
the test applied to the open file whose descriptor number is n, even if the underlying system
does not support the /dev/fd directory.

In the forms which do numeric comparison, the expressions exp undergo arithmetic expansion
as if they were enclosed in $((...)).

For example, the following:
[[¢ -f foo || -f bar) &% $report = y*]] && print File exists.

35

tests if either file foo or file bar exists, and if so, if the value of the parameter report begins
with ‘y’; if the complete condition is true, the message ‘File exists.’ is printed.

13 Prompt Expansion

13.1 Expansion of Prompt Sequences
Prompt sequences undergo a special form of expansion. This type of expansion is also available
using the -P option to the print builtin.

If the PROMPT_SUBST option is set, the prompt string is first subjected to parameter expansion,
command substitution and arithmetic expansion. See Chapter 14 [Expansion], page 40.

Certain escape sequences may be recognised in the prompt string.

If the PROMPT_BANG option is set, a ‘!’ in the prompt is replaced by the current history event
number. A literal ‘!’ may then be represented as ‘!!’.

If the PROMPT_PERCENT option is set, certain escape sequences that start with ‘%’ are expanded.
Many escapes are followed by a single character, although some of these take an optional integer
argument that should appear between the ‘%’ and the next character of the sequence. More
complicated escape sequences are available to provide conditional expansion.

13.2 Simple Prompt Escapes

13.2.1 Special characters
hto Ay
h) A 9.

13.2.2 Login information

yal The line (tty) the user is logged in on, without ‘/dev/’ prefix. If the name starts
with ‘/dev/tty’, that prefix is stripped.

WM The full machine hostname.

Jm The hostname up to the first *.”. An integer may follow the ‘%’ to specify how

many components of the hostname are desired. With a negative integer, trailing
components of the hostname are shown.

%n $USERNAME.

hy The line (tty) the user is logged in on, without ‘/dev/’ prefix. This does not treat
‘/dev/tty’ names specially.

13.2.3 Shell state

yA:: A ‘# if the shell is running with privileges, a ‘%’ if not. Equivalent to ‘% (! .#.%%)’.
The definition of ‘privileged’, for these purposes, is that either the effective user 1D
is zero, or, if POSIX.1le capabilities are supported, that at least one capability is
raised in either the Effective or Inheritable capability vectors.

h? The return status of the last command executed just before the prompt.

h The status of the parser, i.e. the shell constructs (like ‘if’ and ‘for’) that have been
started on the command line. If given an integer number that many strings will be
printed; zero or negative or no integer means print as many as there are. This is

Chapter 13: Prompt Expansion 36

D/A
0

%d
W/

o~

%e

h
h!

hi

%I

%]

%L
%N

%x

he
%.
%C

most useful in prompts PS2 for continuation lines and PS4 for debugging with the
XTRACE option; in the latter case it will also work non-interactively.

The status of the parser in reverse. This is the same as ‘%_" other than the order of
strings. It is often used in RPS2.

Current working directory. If an integer follows the ‘%’, it specifies a number of
trailing components of the current working directory to show; zero means the whole
path. A negative integer specifies leading components, i.e. %-1d specifies the first
component.

As %d and %/, but if the current working directory starts with $HOME, that part is
replaced by a ‘~’. Furthermore, if it has a named directory as its prefix, that part
is replaced by a <’ followed by the name of the directory, but only if the result is
shorter than the full path; Section 14.7 [Filename Expansion], page 62.

Evaluation depth of the current sourced file, shell function, or eval. This is incre-
mented or decremented every time the value of %N is set or reverted to a previous
value, respectively. This is most useful for debugging as part of $P34.

Current history event number.

The line number currently being executed in the script, sourced file, or shell function
given by %N. This is most useful for debugging as part of $PS4.

The line number currently being executed in the file %x. This is similar to %i, but
the line number is always a line number in the file where the code was defined, even
if the code is a shell function.

The number of jobs.
The current value of $SHLVL.

The name of the script, sourced file, or shell function that zsh is currently executing,
whichever was started most recently. If there is none, this is equivalent to the
parameter $0. An integer may follow the ‘%’ to specify a number of trailing path
components to show; zero means the full path. A negative integer specifies leading
components.

The name of the file containing the source code currently being executed. This
behaves as %N except that function and eval command names are not shown, instead
the file where they were defined.

Trailing component of the current working directory. An integer may follow the ‘%’
to get more than one component. Unless ‘%C’ is used, tilde contraction is performed
first. These are deprecated as %c and J%C are equivalent to %1~ and %1/, respectively,
while explicit positive integers have the same effect as for the latter two sequences.

13.2.4 Date and time

%D
WT

AT
%@

The date in yy-mm-dd format.

Current time of day, in 24-hour format.

Current time of day, in 12-hour, am/pm format.

Chapter 13: Prompt Expansion 37

%x
how
YAl
#D{string}

Current time of day in 24-hour format, with seconds.
The date in day-dd format.
The date in mm/dd/yy format.

string is formatted using the strftime function. See man page strftime(3) for more
details. Various zsh extensions provide numbers with no leading zero or space if the
number is a single digit:

hE a day of the month
K the hour of the day on the 24-hour clock
yAR the hour of the day on the 12-hour clock

In addition, if the system supports the POSIX gettimeofday system call, %. pro-
vides decimal fractions of a second since the epoch with leading zeroes. By default
three decimal places are provided, but a number of digits up to 9 may be given
following the %; hence %6. outputs microseconds, and %9. outputs nanoseconds.
(The latter requires a nanosecond-precision clock_gettime; systems lacking this
will return a value multiplied by the appropriate power of 10.) A typical example
of this is the format “4D{%H:%M:%S.%.}".

The GNU extension %N is handled as a synonym for %9..

Additionally, the GNU extension that a ‘-’ between the % and the format character
causes a leading zero or space to be stripped is handled directly by the shell for
the format characters d, £, H, k, 1, m, M, S and y; any other format characters are
provided to the system’s strftime(3) with any leading ‘-’ present, so the handling is
system dependent. Further GNU (or other) extensions are also passed to strftime(3)
and may work if the system supports them.

13.2.5 Visual effects

%B (%b)
hE

WU (%hu)
%S (%hs)
WF (%E)

%K (%k)

A0WA

hG

Start (stop) boldface mode.
Clear to end of line.

Start (stop) underline mode.
Start (stop) standout mode.

Start (stop) using a different foreground colour, if supported by the terminal. The
colour may be specified two ways: either as a numeric argument, as normal, or by
a sequence in braces following the %F, for example %F{red}. In the latter case the
values allowed are as described for the fg zle_highlight attribute; Section 18.7
[Character Highlighting], page 195. This means that numeric colours are allowed in
the second format also.

Start (stop) using a different bacKground colour. The syntax is identical to that for
%F and %f.

Include a string as a literal escape sequence. The string within the braces should
not change the cursor position. Brace pairs can nest.
A positive numeric argument between the % and the { is treated as described for %G

below.

Within a %{...%} sequence, include a ‘glitch’: that is, assume that a single character
width will be output. This is useful when outputting characters that otherwise

Chapter 13: Prompt Expansion 38

cannot be correctly handled by the shell, such as the alternate character set on
some terminals. The characters in question can be included within a %{...%} sequence
together with the appropriate number of %G sequences to indicate the correct width.
An integer between the ‘%’ and ‘G’ indicates a character width other than one.
Hence %{seq’%2G%} outputs seq and assumes it takes up the width of two standard
characters.

Multiple uses of %G accumulate in the obvious fashion; the position of the %G is
unimportant. Negative integers are not handled.

Note that when prompt truncation is in use it is advisable to divide up output into
single characters within each %{...%} group so that the correct truncation point can

be found.

13.3 Conditional Substrings in Prompts

YA The value of the first element of the psvar array parameter. Following the ‘%’ with
an integer gives that element of the array. Negative integers count from the end of
the array.

% (x.true-text . false-text)
Specifies a ternary expression. The character following the x is arbitrary; the same
character is used to separate the text for the ‘true’ result from that for the ‘false’
result. This separator may not appear in the true-text, except as part of a %-
escape sequence. A ‘)’ may appear in the false-text as ‘%)’. true-text and false-
text may both contain arbitrarily-nested escape sequences, including further ternary
expressions.

The left parenthesis may be preceded or followed by a positive integer n, which
defaults to zero. A negative integer will be multiplied by -1, except as noted below
for ‘1’. The test character x may be any of the following:

! True if the shell is running with privileges.
True if the effective uid of the current process is n.
? True if the exit status of the last command was n.

True if at least n shell constructs were started.

C

/ True if the current absolute path has at least n elements relative to the
root directory, hence / is counted as 0 elements.

c

- True if the current path, with prefix replacement, has at least n elements
relative to the root directory, hence / is counted as 0 elements.

D True if the month is equal to n (January = 0).

d True if the day of the month is equal to n.

e True if the evaluation depth is at least n.

g True if the effective gid of the current process is n.

True if the number of jobs is at least n.

L True if the SHLVL parameter is at least n.

Chapter 13: Prompt Expansion 39

%h<string<
%h>string>
% [xstring]

1 True if at least n characters have already been printed on the current
line. When n is negative, true if at least abs(n) characters remain
before the opposite margin (thus the left margin for RPROMPT).

S True if the SECONDS parameter is at least n.

T True if the time in hours is equal to n.

t True if the time in minutes is equal to n.

v True if the array psvar has at least n elements.

v True if element n of the array psvar is set and non-empty.
W True if the day of the week is equal to n (Sunday = 0).

Specifies truncation behaviour for the remainder of the prompt string. The third,
deprecated, form is equivalent to ‘%xstringx’, i.e. x may be ‘<’ or ‘>’. The string
will be displayed in place of the truncated portion of any string; note this does not
undergo prompt expansion.

The numeric argument, which in the third form may appear immediately after
the ‘[’, specifies the maximum permitted length of the various strings that can
be displayed in the prompt. In the first two forms, this numeric argument may
be negative, in which case the truncation length is determined by subtracting the
absolute value of the numeric argument from the number of character positions
remaining on the current prompt line. If this results in a zero or negative length,
a length of 1 is used. In other words, a negative argument arranges that after
truncation at least n characters remain before the right margin (left margin for
RPROMPT).

The forms with ‘<’ truncate at the left of the string, and the forms with ‘>’ truncate
at the right of the string. For example, if the current directory is ‘/home/pike’,
the prompt ‘%8<..<%/’ will expand to ‘..e/pike’. In this string, the terminating
character (‘<’, >’ or ‘1’), or in fact any character, may be quoted by a preceding
‘\’; note when using print -P, however, that this must be doubled as the string is
also subject to standard print processing, in addition to any backslashes removed
by a double quoted string: the worst case is therefore ‘print -P "%<\\\\<<...".

If the string is longer than the specified truncation length, it will appear in full,
completely replacing the truncated string.

The part of the prompt string to be truncated runs to the end of the string, or to
the end of the next enclosing group of the ‘% (’ construct, or to the next truncation
encountered at the same grouping level (i.e. truncations inside a ‘% (’ are separate),
which ever comes first. In particular, a truncation with argument zero (e.g., ‘%<<’)
marks the end of the range of the string to be truncated while turning off truncation
from there on. For example, the prompt ‘%10<...<%~%<<%# ’ will print a truncated
representation of the current directory, followed by a ‘%’ or ‘#’, followed by a space.
Without the ‘%<<’, those two characters would be included in the string to be trun-
cated. Note that ‘%-0<<’ is not equivalent to ‘%<<’ but specifies that the prompt is
truncated at the right margin.

Truncation applies only within each individual line of the prompt, as delimited
by embedded newlines (if any). If the total length of any line of the prompt after
truncation is greater than the terminal width, or if the part to be truncated contains
embedded newlines, truncation behavior is undefined and may change in a future

40

version of the shell. Use ‘%-n(1. true-text . false-text)’ to remove parts of the prompt
when the available space is less than n.

14 Expansion

The following types of expansions are performed in the indicated order in five steps:

History Expansion
This is performed only in interactive shells.

Alias Expansion
Aliases are expanded immediately before the command line is parsed as explained
in Section 6.8 [Aliasing], page 15.

Process Substitution

Parameter Expansion

Command Substitution

Arithmetic Expansion

Brace Expansion
These five are performed in left-to-right fashion. On each argument, any of the five
steps that are needed are performed one after the other. Hence, for example, all the
parts of parameter expansion are completed before command substitution is started.
After these expansions, all unquoted occurrences of the characters ‘\’,*’” and ‘"’ are
removed.

Filename Expansion
If the SH_FILE_EXPANSION option is set, the order of expansion is modified for com-
patibility with sh and ksh. In that case filename expansion is performed immediately
after alias expansion, preceding the set of five expansions mentioned above.

Filename Generation
This expansion, commonly referred to as globbing, is always done last.

The following sections explain the types of expansion in detail.

14.1 History Expansion

History expansion allows you to use words from previous command lines in the command line
you are typing. This simplifies spelling corrections and the repetition of complicated commands
or arguments.

Immediately before execution, each command is saved in the history list, the size of which is
controlled by the HISTSIZE parameter. The one most recent command is always retained in any
case. Each saved command in the history list is called a history event and is assigned a number,
beginning with 1 (one) when the shell starts up. The history number that you may see in your
prompt (see Chapter 13 [Prompt Expansion|, page 35) is the number that is to be assigned to
the next command.

14.1.1 Overview

A history expansion begins with the first character of the histchars parameter, which is ‘!’ by
default, and may occur anywhere on the command line, including inside double quotes (but not
inside single quotes ’. ..’ or C-style quotes $’ ...’ nor when escaped with a backslash).

The first character is followed by an optional event designator (Section 14.1.2 [Event Desig-
nators], page 41) and then an optional word designator (Section 14.1.3 [Word Designators],
page 42); if neither of these designators is present, no history expansion occurs.

Chapter 14: Expansion 41

Input lines containing history expansions are echoed after being expanded, but before any other
expansions take place and before the command is executed. It is this expanded form that is
recorded as the history event for later references.

History expansions do not nest.

By default, a history reference with no event designator refers to the same event as any preceding
history reference on that command line; if it is the only history reference in a command, it refers
to the previous command. However, if the option CSH_JUNKIE_HISTORY is set, then every history
reference with no event specification always refers to the previous command.

For example, ‘!’ is the event designator for the previous command, so ‘!'!:1’ always refers to
the first word of the previous command, and ‘! !$’ always refers to the last word of the previous
command. With CSH_JUNKIE_HISTORY set, then ‘!:1’ and ‘!'$’ function in the same manner as
“11:17 and ‘!!1$’, respectively. Conversely, if CSH_JUNKIE_HISTORY is unset, then ‘!:1” and ‘!'$’
refer to the first and last words, respectively, of the same event referenced by the nearest other
history reference preceding them on the current command line, or to the previous command if
there is no preceding reference.

The character sequence ‘~foo~bar’ (where ‘~’ is actually the second character of the histchars
parameter) repeats the last command, replacing the string foo with bar. More precisely,
the sequence ‘~foo~bar™’ is synonymous with ‘!'!:s~foo~bar™~’, hence other modifiers (see
Section 14.1.4 [Modifiers|, page 42) may follow the final ‘*’. In particular, ‘~foo~bar~:G’ per-
forms a global substitution.

~9

If the shell encounters the character sequence ‘!"’ in the input, the history mechanism is tem-
porarily disabled until the current list (see Chapter 6 [Shell Grammar], page 9) is fully parsed.
The ‘!" is removed from the input, and any subsequent ‘!’ characters have no special signifi-
cance.

A less convenient but more comprehensible form of command history support is provided by the
fc builtin.

14.1.2 Event Designators

An event designator is a reference to a command-line entry in the history list. In the list below,
remember that the initial ‘!’ in each item may be changed to another character by setting the
histchars parameter.

! Start a history expansion, except when followed by a blank, newline, ‘=" or ‘(.

If followed immediately by a word designator (Section 14.1.3 [Word Designators|,
page 42), this forms a history reference with no event designator (Section 14.1.1
[Overview]|, page 40).

I Refer to the previous command. By itself, this expansion repeats the previous

command.
'n Refer to command-line n.
I-n Refer to the current command-line minus n.
I str Refer to the most recent command starting with str.
17str[?] Refer to the most recent command containing str. The trailing ‘?” is necessary if

this reference is to be followed by a modifier or followed by any text that is not to
be considered part of str.

E: Refer to the current command line typed in so far. The line is treated as if it were
complete up to and including the word before the one with the ‘!#’ reference.

1{...} Insulate a history reference from adjacent characters (if necessary).

Chapter 14: Expansion 42

14.1.3 Word Designators

A word designator indicates which word or words of a given command line are to be included in
a history reference. A ‘:’ usually separates the event specification from the word designator. It

may be omitted only if the word designator begins with a ‘=’, ‘$’, ‘x’, ‘=’ or *};’. Word designators
include:

0 The first input word (command).

n The nth argument.

- The first argument. That is, 1.

$ The last argument.

b The word matched by (the most recent) 7str search.

X-y A range of words; x defaults to 0.

* All the arguments, or a null value if there are none.

X* Abbreviates ‘x-$’.

x- Like ‘x*’ but omitting word $.

Note that a ‘%’ word designator works only when used in one of ‘!%’, ‘':% or ‘!?str?:%’, and

only when used after a !? expansion (possibly in an earlier command). Anything else results in
an error, although the error may not be the most obvious one.

14.1.4 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modifiers also work on the result of filename generation
and parameter expansion, except where noted.

a Turn a file name into an absolute path: prepends the current directory, if necessary;
[T

remove ‘.’ path segments; and remove ‘..’ path segments and the segments that
immediately precede them.

This transformation is agnostic about what is in the filesystem, i.e. is on the logical,
not the physical directory. It takes place in the same manner as when changing
directories when neither of the options CHASE_DOTS or CHASE_LINKS is set. For
example, ‘/before/here/../after’ is always transformed to ‘/before/after’, re-
gardless of whether ‘/before/here’ exists or what kind of object (dir, file, symlink,
etc.) it is.

A Turn a file name into an absolute path as the ‘a’ modifier does, and then pass the
result through the realpath(3) library function to resolve symbolic links.

Note: on systems that do not have a realpath(3) library function, symbolic links
are not resolved, so on those systems ‘a’ and ‘A’ are equivalent.

Note: foo:A and realpath(foo) are different on some inputs. For realpath(foo)
semantics, see the ‘P* modifier.

C Resolve a command name into an absolute path by searching the command path
given by the PATH variable. This does not work for commands containing directory
parts. Note also that this does not usually work as a glob qualifier unless a file of
the same name is found in the current directory.

e Remove all but the part of the filename extension following the ¢.’; see the definition
of the filename extension in the description of the r modifier below. Note that
according to that definition the result will be empty if the string ends with a ‘..

Chapter 14: Expansion 43

h [digits] Remove a trailing pathname component, shortening the path by one directory level:

s/1/r[/]

t [digits |

this is the ‘head’ of the pathname. This works like ‘dirname’. If the h is followed im-
mediately (with no spaces or other separator) by any number of decimal digits, and
the value of the resulting number is non-zero, that number of leading components
is preserved instead of the final component being removed. In an absolute path the
leading ‘/’ is the first component, so, for example, if var=/my/path/to/something,
then ${var:h3} substitutes /my/path. Consecutive ‘/’s are treated the same as a
single ‘/’. In parameter substitution, digits may only be used if the expression is in
braces, so for example the short form substitution $var:h2 is treated as ${var:h}2,
not as ${var:h2}. No restriction applies to the use of digits in history substitution
or globbing qualifiers. If more components are requested than are present, the en-
tire path is substituted (so this does not trigger a ‘failed modifier’ error in history
expansion).

Convert the words to all lowercase.
Print the new command but do not execute it. Only works with history expansion.

Turn a file name into an absolute path, like realpath(3). The resulting path will
be absolute, have neither ‘.” nor ‘..’ components, and refer to the same directory
entry as the input filename.

Unlike realpath(3), non-existent trailing components are permitted and preserved.

Quote the substituted words, escaping further substitutions. Works with history
expansion and parameter expansion, though for parameters it is only useful if the
resulting text is to be re-evaluated such as by eval.

Remove one level of quotes from the substituted words.

Remove a filename extension leaving the root name. Strings with no filename ex-
tension are not altered. A filename extension is a ‘.’ followed by any number of
characters (including zero) that are neither ‘.’ nor ‘/’ and that continue to the end
of the string. For example, the extension of ‘foo.orig.c’ is ‘.c’, and ‘dir.c/foo’
has no extension.

Substitute r for I as described below. The substitution is done only for the first
string that matches I. For arrays and for filename generation, this applies to each
word of the expanded text. See below for further notes on substitutions.

The forms ‘gs/1/r’ and ‘s/1/r/:G perform global substitution, i.e. substitute every
occurrence of r for I. Note that the g or :G must appear in exactly the position
shown.

See further notes on this form of substitution below.

Repeat the previous s substitution. Like s, may be preceded immediately by a g.
In parameter expansion the & must appear inside braces, and in filename generation
it must be quoted with a backslash.

Remove all leading pathname components, leaving the final component (tail). This
works like ‘basename’. Any trailing slashes are first removed. Decimal digits are
handled as described above for (h), but in this case that number of trailing compo-
nents is preserved instead of the default 1; 0 is treated the same as 1.

Convert the words to all uppercase.

Like g, but break into words at whitespace. Does not work with parameter expan-
sion.

Chapter 14: Expansion 44

The s/1/r/ substitution works as follows. By default the left-hand side of substitutions are not
patterns, but character strings. Any character can be used as the delimiter in place of ‘//°. A
backslash quotes the delimiter character. The character ‘&’, in the right-hand-side r, is replaced
by the text from the left-hand-side I. The ‘&’ can be quoted with a backslash. A null I uses
the previous string either from the previous I or from the contextual scan string s from ‘!7s’.
You can omit the rightmost delimiter if a newline immediately follows r; the rightmost ‘?” in a
context scan can similarly be omitted. Note the same record of the last I and r is maintained
across all forms of expansion.

Note that if a ‘&’ is used within glob qualifiers an extra backslash is needed as a & is a special
character in this case.

Also note that the order of expansions affects the interpretation of I and r. When used in a
history expansion, which occurs before any other expansions, I and r are treated as literal strings
(except as explained for HIST_SUBST_PATTERN below). When used in parameter expansion, the
replacement of r into the parameter’s value is done first, and then any additional process,
parameter, command, arithmetic, or brace references are applied, which may evaluate those
substitutions and expansions more than once if I appears more than once in the starting value.
When used in a glob qualifier, any substitutions or expansions are performed once at the time
the qualifier is parsed, even before the ‘:s’ expression itself is divided into I and r sides.

If the option HIST_SUBST_PATTERN is set, I is treated as a pattern of the usual form described in
Section 14.8 [Filename Generation], page 64. This can be used in all the places where modifiers
are available; note, however, that in globbing qualifiers parameter substitution has already taken
place, so parameters in the replacement string should be quoted to ensure they are replaced at
the correct time. Note also that complicated patterns used in globbing qualifiers may need the
extended glob qualifier notation (#q:s/.../.../) in order for the shell to recognize the expression
as a glob qualifier. Further, note that bad patterns in the substitution are not subject to the
NO_BAD_PATTERN option so will cause an error.

When HIST_SUBST_PATTERN is set, | may start with a # to indicate that the pattern must match
at the start of the string to be substituted, and a % may appear at the start or after an # to
indicate that the pattern must match at the end of the string to be substituted. The % or # may
be quoted with two backslashes.

For example, the following piece of filename generation code with the EXTENDED_GLOB option:
print -r -- *.c(#q:s/#),(#b)s(*) .c/’S${match[1]}.C’/)

takes the expansion of *. c and applies the glob qualifiers in the (#qg...) expression, which consists
of a substitution modifier anchored to the start and end of each word (#%). This turns on
backreferences ((#b)), so that the parenthesised subexpression is available in the replacement
string as ${match[1]}. The replacement string is quoted so that the parameter is not substituted
before the start of filename generation.

The following £, F, w and W modifiers work only with parameter expansion and filename gener-
ation. They are listed here to provide a single point of reference for all modifiers.

f Repeats the immediately (without a colon) following modifier until the resulting
word doesn’t change any more.

F:expr: Like £, but repeats only n times if the expression expr evaluates to n. Any character
can be used instead of the :7; if ‘C’, ‘[’, or ‘{’ is used as the opening delimiter, the
closing delimiter should be ’)’, ‘], or ‘}’, respectively.

W Makes the immediately following modifier work on each word in the string.
W:sep: Like w but words are considered to be the parts of the string that are separated by
sep. Any character can be used instead of the ‘:’; opening parentheses are handled

specially, see above.

Chapter 14: Expansion 45

14.2 Process Substitution

Each part of a command argument that takes the form ‘< (list)’, > (list)’ or ‘=(list)’ is subject to
process substitution. The expression may be preceded or followed by other strings except that,
to prevent clashes with commonly occurring strings and patterns, the last form must occur at
the start of a command argument, and the forms are only expanded when first parsing command
or assignment arguments. Process substitutions may be used following redirection operators; in
this case, the substitution must appear with no trailing string.

Note that ‘<<(list)’ is not a special syntax; it is equivalent to ‘< <(list)’, redirecting standard
input from the result of process substitution. Hence all the following documentation applies.
The second form (with the space) is recommended for clarity.

In the case of the < or > forms, the shell runs the commands in list as a subprocess of the job
executing the shell command line. If the system supports the /dev/fd mechanism, the command
argument is the name of the device file corresponding to a file descriptor; otherwise, if the system
supports named pipes (FIFOs), the command argument will be a named pipe. If the form with
> is selected then writing on this special file will provide input for list. If < is used, then the file
passed as an argument will be connected to the output of the list process. For example,

paste <(cut -f1 filel) <(cut -£f3 file2) |
tee >(processl) >(process2) >/dev/null

cuts fields 1 and 3 from the files filel and file2 respectively, pastes the results together, and
sends it to the processes processl and process2.

If =(...) is used instead of <(...), then the file passed as an argument will be the name of a
temporary file containing the output of the list process. This may be used instead of the < form
for a program that expects to lseek (see man page Iseek(2)) on the input file.

There is an optimisation for substitutions of the form =(<<<arg), where arg is a single-word
argument to the here-string redirection <<<. This form produces a file name containing the value
of arg after any substitutions have been performed. This is handled entirely within the current
shell. This is effectively the reverse of the special form $(<arg) which treats arg as a file name
and replaces it with the file’s contents.

The = form is useful as both the /dev/fd and the named pipe implementation of <(...) have
drawbacks. In the former case, some programmes may automatically close the file descriptor
in question before examining the file on the command line, particularly if this is necessary
for security reasons such as when the programme is running setuid. In the second case, if
the programme does not actually open the file, the subshell attempting to read from or write
to the pipe will (in a typical implementation, different operating systems may have different
behaviour) block for ever and have to be killed explicitly. In both cases, the shell actually
supplies the information using a pipe, so that programmes that expect to lseek (see man page
Iseek(2)) on the file will not work.

Also note that the previous example can be more compactly and efficiently written (provided
the MULTIOS option is set) as:

paste <(cut -f1 filel) <(cut -f3 file2) > >(processl) > >(process2)

The shell uses pipes instead of FIFOs to implement the latter two process substitutions in the
above example.

There is an additional problem with >(process); when this is attached to an external command,
the parent shell does not wait for process to finish and hence an immediately following command
cannot rely on the results being complete. The problem and solution are the same as described
in the section MULTIOS in Chapter 7 [Redirection], page 17. Hence in a simplified version of
the example above:

paste <(cut -f1 filel) <(cut -f3 file2) > >(process)

Chapter 14: Expansion 46

(note that no MULTIOS are involved), process will be run asynchronously as far as the parent
shell is concerned. The workaround is:

{ paste <(cut -f1 filel) <(cut -f3 file2) } > >(process)
The extra processes here are spawned from the parent shell which will wait for their completion.

Another problem arises any time a job with a substitution that requires a temporary file is
disowned by the shell, including the case where ‘4!’ or ‘&|’ appears at the end of a command
containing a substitution. In that case the temporary file will not be cleaned up as the shell no
longer has any memory of the job. A workaround is to use a subshell, for example,

(mycmd =(myoutput)) &!
as the forked subshell will wait for the command to finish then remove the temporary file.

A general workaround to ensure a process substitution endures for an appropriate length of time
is to pass it as a parameter to an anonymous shell function (a piece of shell code that is run
immediately with function scope). For example, this code:

O A
print File $1:
cat $1
} =(print This be the verse)

outputs something resembling the following

File /tmp/zsh6nU0kS:
This be the verse

The temporary file created by the process substitution will be deleted when the function exits.

14.3 Parameter Expansion

The character ‘$’ is used to introduce parameter expansions. See Chapter 15 [Parameters],
page 75, for a description of parameters, including arrays, associative arrays, and subscript
notation to access individual array elements.

Note in particular the fact that words of unquoted parameters are not automatically split on
whitespace unless the option SH_WORD_SPLIT is set; see references to this option below for more
details. This is an important difference from other shells. However, as in other shells, null words
are elided from unquoted parameters’ expansions.

With default options, after the assignments:

array=("first word" "" "third word")
scalar="only word"

then $array substitutes two words, ‘first word’ and ‘third word’, and $scalar substitutes a
single word ‘only word’. Note that second element of array was elided. Scalar parameters can
be elided too if their value is null (empty). To avoid elision, use quoting as follows: "$scalar" for
scalars and "${array[@]}" or "${(@)array}" for arrays. (The last two forms are equivalent.)

Parameter expansions can involve flags, as in ‘${(@kv)aliases}’, and other operators, such as
‘${PREFIX:-"/usr/local"}’. Parameter expansions can also be nested. These topics will be
introduced below. The full rules are complicated and are noted at the end.

In the expansions discussed below that require a pattern, the form of the pattern is the same as
that used for filename generation; see Section 14.8 [Filename Generation], page 64. Note that
these patterns, along with the replacement text of any substitutions, are themselves subject
to parameter expansion, command substitution, and arithmetic expansion. In addition to the
following operations, the colon modifiers described in Section 14.1.4 [Modifiers], page 42, in
Section 14.1 [History Expansion], page 40, can be applied: for example, ${i:s/foo/bar/?}
performs string substitution on the expansion of parameter $i.

Chapter 14: Expansion 47

In the following descriptions, ‘word’ refers to a single word substituted on the command line,
not necessarily a space delimited word.

${name} The value, if any, of the parameter name is substituted. The braces are required
if the expansion is to be followed by a letter, digit, or underscore that is not to be
interpreted as part of name. In addition, more complicated forms of substitution
usually require the braces to be present; exceptions, which only apply if the option
KSH_ARRAYS is not set, are a single subscript or any colon modifiers appearing after
the name, or any of the characters ‘*’, ‘=", *~, ‘#’ or ‘+’ appearing before the name,
all of which work with or without braces.

If name is an array parameter, and the KSH_ARRAYS option is not set, then the
value of each element of name is substituted, one element per word. Otherwise, the
expansion results in one word only; with KSH_ARRAYS, this is the first element of an
array. No field splitting is done on the result unless the SH_WORD_SPLIT option is
set. See also the flags = and s:string:.

${+name} If name is the name of a set parameter ‘1’ is substituted, otherwise ‘0’ is substituted.

${name-word?}

${name:-word}
If name is set, or in the second form is non-null, then substitute its value; otherwise
substitute word. In the second form name may be omitted, in which case word is
always substituted.

${name+word}

${name:+word?}
If name is set, or in the second form is non-null, then substitute word; otherwise
substitute nothing.

${name=word}

${name:=word}

${name: :=word}
In the first form, if name is unset then set it to word; in the second form, if name
is unset or null then set it to word; and in the third form, unconditionally set name
to word. In all forms, the value of the parameter is then substituted.

${name?word}

${name: ?word}
In the first form, if name is set, or in the second form if name is both set and
non-null, then substitute its value; otherwise, print word and exit from the shell.
Interactive shells instead return to the prompt. If word is omitted, then a standard
message is printed.

In any of the above expressions that test a variable and substitute an alternate word, note that
you can use standard shell quoting in the word value to selectively override the splitting done
by the SH_WORD_SPLIT option and the = flag, but not splitting by the s:string: flag.

In the following expressions, when name is an array and the substitution is not quoted, or if the
‘(@) flag or the name[@] syntax is used, matching and replacement is performed on each array
element separately.

${name#tpattern}

${name##pattern}
If the pattern matches the beginning of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

Chapter 14: Expansion 48

${name’,pattern}
${name’pattern}

${name

${name

${name

${name:
${name:

If the pattern matches the end of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

:#pattern}

If the pattern matches the value of name, then substitute the empty string; oth-
erwise, just substitute the value of name. If name is an array the matching array
elements are removed (use the ‘(M)’ flag to remove the non-matched elements).

: |arrayname}

If arrayname is the name (N.B., not contents) of an array variable, then any ele-
ments contained in arrayname are removed from the substitution of name. If the
substitution is scalar, either because name is a scalar variable or the expression is
quoted, the elements of arrayname are instead tested against the entire expression.

:*arraynamey}

Similar to the preceding substitution, but in the opposite sense, so that entries
present in both the original substitution and as elements of arrayname are retained
and others removed.

~arrayname}
~~arrayname}

Zips two arrays, such that the output array is twice as long as the shortest (longest
for ‘:~"") of name and arrayname, with the elements alternatingly being picked from
them. For ‘:~’ if one of the input arrays is longer, the output will stop when the
end of the shorter array is reached. Thus,

a=(1 2 3 4); b=(a b); print ${a: b}
will output ‘1 a 2 b’. For ‘:~"’, then the input is repeated until all of the longer
array has been used up and the above will output ‘1 a 2 b 3 a 4 b’.
Either or both inputs may be a scalar, they will be treated as an array of length
1 with the scalar as the only element. If either array is empty, the other array is
output with no extra elements inserted.
Currently the following code will output ‘a b’ and ‘1’ as two separate elements,
which can be unexpected. The second print provides a workaround which should
continue to work if this is changed.

a=(a b); b=(1 2); print -1 "${a:"b}"; print -1 "${${a:"b}}"

${name: offset}
${name: offset: length}

This syntax gives effects similar to parameter subscripting in the form
$name [start,end], but is compatible with other shells; note that both offset and
length are interpreted differently from the components of a subscript.

If offset is non-negative, then if the variable name is a scalar substitute the contents
starting offset characters from the first character of the string, and if name is an
array substitute elements starting offset elements from the first element. If length
is given, substitute that many characters or elements, otherwise the entire rest of
the scalar or array.

A positive offset is always treated as the offset of a character or element in name
from the first character or element of the array (this is different from native zsh
subscript notation). Hence 0 refers to the first character or element regardless of
the setting of the option KSH_ARRAYS.

Chapter 14: Expansion 49

A negative offset counts backwards from the end of the scalar or array, so that -1
corresponds to the last character or element, and so on.

When positive, length counts from the offset position toward the end of the scalar or
array. When negative, length counts back from the end. If this results in a position
smaller than offset, a diagnostic is printed and nothing is substituted.

The option MULTIBYTE is obeyed, i.e. the offset and length count multibyte charac-
ters where appropriate.

offset and length undergo the same set of shell substitutions as for scalar assignment;
in addition, they are then subject to arithmetic evaluation. Hence, for example

print ${foo:3}

print ${foo: 1 + 2}

print ${foo:$((C 1 + 2))}
print ${foo:$(echo 1 + 2)}

all have the same effect, extracting the string starting at the fourth character of
$foo if the substitution would otherwise return a scalar, or the array starting at the
fourth element if $foo would return an array. Note that with the option KSH_ARRAYS
$foo always returns a scalar (regardless of the use of the offset syntax) and a form
such as ${foo[*] :3} is required to extract elements of an array named foo.

If offset is negative, the - may not appear immediately after the : as this indicates
the ${name:-word} form of substitution. Instead, a space may be inserted before
the —. Furthermore, neither offset nor length may begin with an alphabetic character
or & as these are used to indicate history-style modifiers. To substitute a value from
a variable, the recommended approach is to precede it with a $ as this signifies
the intention (parameter substitution can easily be rendered unreadable); however,
as arithmetic substitution is performed, the expression ${var: offs} does work,
retrieving the offset from $offs.

For further compatibility with other shells there is a special case for array offset
0. This usually accesses the first element of the array. However, if the substitution
refers to the positional parameter array, e.g. $@ or $*, then offset 0 instead refers
to $0, offset 1 refers to $1, and so on. In other words, the positional parameter
array is effectively extended by prepending $0. Hence ${*:0:13} substitutes $0 and
${*:1:1} substitutes $1.

${name/pattern/repl}

${name//pattern/repl}

${name:/pattern/repl}
Replace the longest possible match of pattern in the expansion of parameter name
by string repl. The first form replaces just the first occurrence, the second form all
occurrences, and the third form replaces only if pattern matches the entire string.
Both pattern and repl are subject to double-quoted substitution, so that expressions
like ${name/$opat/$npat} will work, but obey the usual rule that pattern characters
in $opat are not treated specially unless either the option GLOB_SUBST is set, or
$opat is instead substituted as ${~opat}.

The pattern may begin with a ‘#’, in which case the pattern must match at the
start of the string, or ‘%’, in which case it must match at the end of the string, or
‘#%’ in which case the pattern must match the entire string. The repl may be an
empty string, in which case the final ‘/’ may also be omitted. To quote the final </’
in other cases it should be preceded by a single backslash; this is not necessary if
the ¢/7 occurs inside a substituted parameter. Note also that the ‘#’, ‘%’ and ‘#% are
not active if they occur inside a substituted parameter, even at the start.

Chapter 14: Expansion 50

${#spec

${"spec}

${=spec?}

${ " spec}

If, after quoting rules apply, ${name} expands to an array, the replacements act on
each element individually. Note also the effect of the I and S parameter expansion
flags below; however, the flags M, R, B, E and N are not useful.

For example,

foo="twinkle twinkle little star" sub="tx*e" rep="spy"
print ${foo//${ " sub}/$rep}
print ${(S)foo//${ sub}/$rep’

Here, the *~7 ensures that the text of $sub is treated as a pattern rather than a plain
string. In the first case, the longest match for t*e is substituted and the result is
‘spy star’, while in the second case, the shortest matches are taken and the result
is ‘spy spy lispy star’.

If spec is one of the above substitutions, substitute the length in characters of the
result instead of the result itself. If spec is an array expression, substitute the
number of elements of the result. This has the side-effect that joining is skipped
even in quoted forms, which may affect other sub-expressions in spec. Note that ‘~’,
‘=" and ‘~’, below, must appear to the left of ‘#’ when these forms are combined.

If the option POSIX_IDENTIFIERS is not set, and spec is a simple name, then the
braces are optional; this is true even for special parameters so e.g. $#- and $#x take
the length of the string $- and the array $* respectively. If POSIX_IDENTIFIERS is
set, then braces are required for the # to be treated in this fashion.

Turn on the RC_EXPAND_PARAM option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, array expansions of the form foo${xx}bar, where
the parameter xx is set to (a b ¢), are substituted with ‘fooabar foobbar foocbar’
instead of the default ‘fooa b cbar’. Note that an empty array will therefore cause
all arguments to be removed.

Internally, each such expansion is converted into the equivalent list for brace expan-
sion. E.g., ${"var} becomes {$var[1],$var[2],...}, and is processed as described
in Section 14.6 [Brace Expansion|, page 61, below: note, however, the expansion
happens immediately, with any explicit brace expansion happening later. If word
splitting is also in effect the $var [N] may themselves be split into different list
elements.

Perform word splitting using the rules for SH_WORD_SPLIT during the evaluation of
spec, but regardless of whether the parameter appears in double quotes; if the ‘=’
is doubled, turn it off. This forces parameter expansions to be split into separate
words before substitution, using IFS as a delimiter. This is done by default in most
other shells.

Note that splitting is applied to word in the assignment forms of spec before the
assignment to name is performed. This affects the result of array assignments with
the A flag.

Turn on the GLOB_SUBST option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, the string resulting from the expansion will be
interpreted as a pattern anywhere that is possible, such as in filename expansion
and filename generation and pattern-matching contexts like the right hand side of
the ‘=" and ‘!=’ operators in conditions.

In nested substitutions, note that the effect of the = applies to the result of the
current level of substitution. A surrounding pattern operation on the result may
cancel it. Hence, for example, if the parameter foo is set to *, ${"foo//*/*.c}
is substituted by the pattern *.c, which may be expanded by filename generation,

Chapter 14: Expansion 51

but ${${ "foo}//*/*.c} substitutes to the string *.c, which will not be further
expanded.

If a ${...} type parameter expression or a $(...) type command substitution is used in place of
name above, it is expanded first and the result is used as if it were the value of name. Thus it
is possible to perform nested operations: ${${foo#head}’taill} substitutes the value of $foo
with both ‘head’ and ‘tail’ deleted. The form with $(...) is often useful in combination with
the flags described next; see the examples below. Each name or nested ${...} in a parameter
expansion may also be followed by a subscript expression as described in Section 15.2 [Array
Parameters|, page 76.

Note that double quotes may appear around nested expressions, in which case only the part
inside is treated as quoted; for example, ${(£) "$(fo0) "} quotes the result of $(foo), but the
flag ‘(£)’ (see below) is applied using the rules for unquoted expansions. Note further that
quotes are themselves nested in this context; for example, in "${(@f)"$(foo) "}", there are two
sets of quotes, one surrounding the whole expression, the other (redundant) surrounding the
$(foo) as before.

14.3.1 Parameter Expansion Flags

If the opening brace is directly followed by an opening parenthesis, the string up to the matching
closing parenthesis will be taken as a list of flags. In cases where repeating a flag is meaningful,
the repetitions need not be consecutive; for example, ‘(q/%q%q)’ means the same thing as the
more readable ‘(%%qqq)’. The following flags are supported:

Evaluate the resulting words as numeric expressions and output the characters cor-
responding to the resulting integer. Note that this form is entirely distinct from use
of the # without parentheses.

If the MULTIBYTE option is set and the number is greater than 127 (i.e. not an ASCII
character) it is treated as a Unicode character.

b Expand all % escapes in the resulting words in the same way as in prompts
(see Chapter 13 [Prompt Expansion], page 35). If this flag is given twice, full
prompt expansion is done on the resulting words, depending on the setting of the
PROMPT_PERCENT, PROMPT_SUBST and PROMPT_BANG options.

@ In double quotes, array elements are put into separate words. E.g., ‘"${(@)foo}"’
is equivalent to ‘"${foo[@]}"’ and ‘"${(@)foo[1,2]}" is the same as ‘"$foo[1]"
"$foo[2]"’. This is distinct from field splitting by the £, s or z flags, which still
applies within each array element.

A Convert the substitution into an array expression, even if it otherwise would
be scalar. This has lower precedence than subscripting, so one level of nested
expansion is required in order that subscripts apply to array elements. Thus
${${(A) name}[1]1} yields the full value of name when name is scalar.

This assigns an array parameter with ‘${...=...}", ‘${...:=..} or ‘${...: :=...}". If this
flag is repeated (as in ‘AA’), assigns an associative array parameter. Assignment is
made before sorting or padding; if field splitting is active, the word part is split
before assignment. The name part may be a subscripted range for ordinary arrays;
when assigning an associative array, the word part must be converted to an array,
for example by using ‘${(AA)=name=...}’ to activate field splitting.

Surrounding context such as additional nesting or use of the value in a scalar as-
signment may cause the array to be joined back into a single string again.

a Sort in array index order; when combined with ‘0’ sort in reverse array index order.
Note that ‘a’ is therefore equivalent to the default but ‘Oa’ is useful for obtaining
an array’s elements in reverse order.

Chapter 14: Expansion 52

g:opts:

Quote with backslashes only characters that are special to pattern matching. This is
useful when the contents of the variable are to be tested using GLOB_SUBST, including
the ${"...} switch.

Quoting using one of the q family of flags does not work for this purpose since quotes
are not stripped from non-pattern characters by GLOB_SUBST. In other words,

pattern=${(q)str}
[[$str = ${"pattern} 1]

works if $str is ‘a*b’ but not if it is ‘a b’, whereas

pattern=${(b)str}
[[$str = ${"pattern} 1]

is always true for any possible value of $str.

With ${#name}, count the total number of characters in an array, as if the elements
were concatenated with spaces between them. This is not a true join of the array,
so other expressions used with this flag may have an effect on the elements of the
array before it is counted.

Capitalize the resulting words. ‘Words’ in this case refers to sequences of alphanu-
meric characters separated by non-alphanumerics, not to words that result from
field splitting.

Assume the string or array elements contain directories and attempt to substitute
the leading part of these by names. The remainder of the path (the whole of it if
the leading part was not substituted) is then quoted so that the whole string can
be used as a shell argument. This is the reverse of ‘=’ substitution: see Section 14.7
[Filename Expansion], page 62.

Perform single word shell expansions, namely parameter expansion, command sub-
stitution and arithmetic expansion, on the result. Such expansions can be nested
but too deep recursion may have unpredictable effects.

Split the result of the expansion at newlines. This is a shorthand for ‘ps:\n:’.

Join the words of arrays together using newline as a separator. This is a shorthand
for ‘pj:\n:’.

Process escape sequences like the echo builtin when no options are given (g::).
With the o option, octal escapes don’t take a leading zero. With the c option,
sequences like ‘"X’ are also processed. With the e option, processes ‘\M-t’ and
similar sequences like the print builtin. With both of the o and e options, behaves
like the print builtin except that in none of these modes is ‘\c’ interpreted.

Sort case-insensitively. May be combined with ‘n’ or ‘0’.

If name refers to an associative array, substitute the keys (element names) rather
than the values of the elements. Used with subscripts (including ordinary arrays),
force indices or keys to be substituted even if the subscript form refers to val-
ues. However, this flag may not be combined with subscript ranges. With the
KSH_ARRAYS option a subscript ‘[*]’ or ‘[@]’ is needed to operate on the whole
array, as usual.

Convert all letters in the result to lower case.

Sort decimal integers numerically; if the first differing characters of two test strings
are not digits, sorting is lexical. Integers with more initial zeroes are sorted before
those with fewer or none. Hence the array ‘fool f0002 foo2 fo003 f0020 f0023’
is sorted into the order shown. May be combined with ‘i’ or ‘0.

Chapter 14: Expansion 53

o) Sort the resulting words in ascending order; if this appears on its own the sorting
is lexical and case-sensitive (unless the locale renders it case-insensitive). Sorting
in ascending order is the default for other forms of sorting, so this is ignored if
combined with ‘a’, ‘i’ or ‘n’.

7 s

0 Sort the resulting words in descending order; ‘0’ without ‘a’, ‘i’ or ‘n’ sorts in reverse
lexical order. May be combined with ‘a’; ‘i’ or ‘n’ to reverse the order of sorting.

P This forces the value of the parameter name to be interpreted as a further parameter
name, whose value will be used where appropriate. Note that flags set with one of
the typeset family of commands (in particular case transformations) are not applied
to the value of name used in this fashion.

If used with a nested parameter or command substitution, the result of that will be
taken as a parameter name in the same way. For example, if you have ‘foo=bar’
and ‘bar=baz’, the strings ${(P)foo}, ${(P)${foo}}, and ${(P)$(echo bar)} will
be expanded to ‘baz’.

Likewise, if the reference is itself nested, the expression with the flag is treated as if
it were directly replaced by the parameter name. It is an error if this nested substi-
tution produces an array with more than one word. For example, if ‘name=assoc’
where the parameter assoc is an associative array, then ‘${${(P)name}[elt]}’
refers to the element of the associative subscripted ‘elt’.

q Quote characters that are special to the shell in the resulting words with backslashes;
unprintable or invalid characters are quoted using the $’\INNN’ form, with separate
quotes for each octet.

If this flag is given twice, the resulting words are quoted in single quotes and if it is
given three times, the words are quoted in double quotes; in these forms no special
handling of unprintable or invalid characters is attempted. If the flag is given four
times, the words are quoted in single quotes preceded by a $. Note that in all three
of these forms quoting is done unconditionally, even if this does not change the way
the resulting string would be interpreted by the shell.

If a g- is given (only a single q may appear), a minimal form of single quoting is
used that only quotes the string if needed to protect special characters. Typically
this form gives the most readable output.

If a g+ is given, an extended form of minimal quoting is used that causes unprintable
characters to be rendered using $°...°. This quoting is similar to that used by the
output of values by the typeset family of commands.

Q Remove one level of quotes from the resulting words.

t Use a string describing the type of the parameter where the value of the parameter
would usually appear. This string consists of keywords separated by hyphens (‘-’).
The first keyword in the string describes the main type, it can be one of ‘scalar’,

‘array’, ‘integer’, ‘float’ or ‘association’. The other keywords describe the type
in more detail:

local for local parameters
left for left justified parameters

right_blanks
for right justified parameters with leading blanks

right_zeros
for right justified parameters with leading zeros

Chapter 14: Expansion 54

0

lower for parameters whose value is converted to all lower case when it is
expanded

upper for parameters whose value is converted to all upper case when it is
expanded

readonly for readonly parameters

tag for tagged parameters

export for exported parameters

unique for arrays which keep only the first occurrence of duplicated values
hide for parameters with the ‘hide’ flag

hideval for parameters with the ‘hideval’ flag
special for special parameters defined by the shell
Expand only the first occurrence of each unique word.
Convert all letters in the result to upper case.

Used with k, substitute (as two consecutive words) both the key and the value of
each associative array element. Used with subscripts, force values to be substituted
even if the subscript form refers to indices or keys.

Make any special characters in the resulting words visible.

With ${#name}, count words in arrays or strings; the s flag may be used to set a
word delimiter.

Similar to w with the difference that empty words between repeated delimiters are
also counted.

With this flag, parsing errors occurring with the Q, e and # flags or the pattern
matching forms such as ‘${name#tpattern}’ are reported. Without the flag, errors
are silently ignored.

Split the result of the expansion into words using shell parsing to find the words, i.e.
taking into account any quoting in the value. Comments are not treated specially
but as ordinary strings, similar to interactive shells with the INTERACTIVE_COMMENTS
option unset (however, see the Z flag below for related options)

Note that this is done very late, even later than the ‘(s)’ flag. So to access single
words in the result use nested expansions as in ‘${${(z)foo}[2]}’. Likewise, to
remove the quotes in the resulting words use ‘${(Q)${(z)fool}}".

Split the result of the expansion on null bytes. This is a shorthand for ‘ps:\0:".

The following flags (except p) are followed by one or more arguments as shown. Any character,
or the matching pairs *(...)", ‘“{...}’, *[...]’, or ‘<...>’, may be used in place of a colon as delimiters,
but note that when a flag takes more than one argument, a matched pair of delimiters must
surround each argument.

P

Recognize the same escape sequences as the print builtin in string arguments to
any of the flags described below that follow this argument.

Alternatively, with this option string arguments may be in the form $var in which
case the value of the variable is substituted. Note this form is strict; the string
argument does not undergo general parameter expansion.

For example,

sep=:

Chapter 14: Expansion 55

j:string:

val=a:b:c
print ${(ps.$sep.)val’

splits the variable on a :.

Strings inserted into the expansion by any of the flags below are to be treated as
patterns. This applies to the string arguments of flags that follow ~ within the same
set of parentheses. Compare with ~ outside parentheses, which forces the entire
substituted string to be treated as a pattern. Hence, for example,

[["e" =${Cj.|.)array} 1]

treats ‘|’ as a pattern and succeeds if and only if $array contains the string ‘?” as
an element. The ~ may be repeated to toggle the behaviour; its effect only lasts to
the end of the parenthesised group.

Join the words of arrays together using string as a separator. Note that this occurs
before field splitting by the s:string: flag or the SH_WORD_SPLIT option.

l:expr: :stringl : :string2:

Pad the resulting words on the left. FEach word will be truncated if required and
placed in a field expr characters wide.

The arguments :stringl : and :string2: are optional; neither, the first, or both may
be given. Note that the same pairs of delimiters must be used for each of the three
arguments. The space to the left will be filled with stringl (concatenated as often
as needed) or spaces if stringl is not given. If both stringl and string2 are given,
string2 is inserted once directly to the left of each word, truncated if necessary,
before stringl is used to produce any remaining padding.

If either of stringl or string2 is present but empty, i.e. there are two delimiters
together at that point, the first character of $IFS is used instead.

If the MULTIBYTE option is in effect, the flag m may also be given, in which case
widths will be used for the calculation of padding; otherwise individual multibyte
characters are treated as occupying one unit of width.

If the MULTIBYTE option is not in effect, each byte in the string is treated as occupying
one unit of width.

Control characters are always assumed to be one unit wide; this allows the mecha-
nism to be used for generating repetitions of control characters.

Only useful together with one of the flags 1 or r or with the # length operator when
the MULTIBYTE option is in effect. Use the character width reported by the system
in calculating how much of the string it occupies or the overall length of the string.
Most printable characters have a width of one unit, however certain Asian character
sets and certain special effects use wider characters; combining characters have zero
width. Non-printable characters are arbitrarily counted as zero width; how they
would actually be displayed will vary.

If the m is repeated, the character either counts zero (if it has zero width), else
one. For printable character strings this has the effect of counting the number of
glyphs (visibly separate characters), except for the case where combining characters
themselves have non-zero width (true in certain alphabets).

r:expr::stringl: :string2:

As 1, but pad the words on the right and insert string2 immediately to the right of
the string to be padded.

Left and right padding may be used together. In this case the strategy is to apply
left padding to the first half width of each of the resulting words, and right padding

Chapter 14: Expansion 56

s:string:

Z:opts:

_:flags:

to the second half. If the string to be padded has odd width the extra padding is
applied on the left.

Force field splitting at the separator string. Note that a string of two or more
characters means that all of them must match in sequence; this differs from the
treatment of two or more characters in the IFS parameter. See also the = flag and
the SH_WORD_SPLIT option. An empty string may also be given in which case every
character will be a separate element.

For historical reasons, the usual behaviour that empty array elements are retained
inside double quotes is disabled for arrays generated by splitting; hence the following;:

line="one: :three"

print -1 "${(s.:.)line}"
produces two lines of output for one and three and elides the empty field. To
override this behaviour, supply the ‘(@)’ flag as well, i.e. "${(@s.:.)1linel}"

As z but takes a combination of option letters between a following pair of delimiter
characters. With no options the effect is identical to z. (Z+c+) causes comments
to be parsed as a string and retained; any field in the resulting array beginning
with an unquoted comment character is a comment. (Z+C+) causes comments to be
parsed and removed. The rule for comments is standard: anything between a word
starting with the third character of $HISTCHARS, default #, up to the next newline is
a comment. (Z+n+) causes unquoted newlines to be treated as ordinary whitespace,
else they are treated as if they are shell code delimiters and converted to semicolons.
Options are combined within the same set of delimiters, e.g. (Z+Cn+).

The underscore (_) flag is reserved for future use. As of this revision of zsh, there
are no valid flags; anything following an underscore, other than an empty pair of
delimiters, is treated as an error, and the flag itself has no effect.

The following flags are meaningful with the ${...#...} or ${...%...} forms. The S and I flags may
also be used with the ${.../...} forms.

S

With # or ##, search for the match that starts closest to the start of the string (a
‘substring match’). Of all matches at a particular position, # selects the shortest
and ## the longest:

% str="aXbXc"

% echo ${(S)str#X*}

abXc

% echo ${(S)str##Xx*}

a

/A
With % or %%, search for the match that starts closest to the end of the string:

% str="aXbXc"

% echo ${(S)str)X*}

aXbc

% echo ${(8)stri%X*}

aXb

b
(Note that % and %% don’t search for the match that ends closest to the end of the
string, as one might expect.)
With substitution via ${.../...} or ${...//...}, specifies non-greedy matching, i.e.
that the shortest instead of the longest match should be replaced:

% str="abab"

Chapter 14: Expansion 57

% echo ${str/*b/_}

% echo ${(S)str/*b/_}

_ab
/A
I:expr: Search the exprth match (where expr evaluates to a number). This only applies

when searching for substrings, either with the S flag, or with ${.../...} (only the
exprth match is substituted) or ${...//...} (all matches from the exprth on are
substituted). The default is to take the first match.
The exprth match is counted such that there is either one or zero matches from each
starting position in the string, although for global substitution matches overlapping
previous replacements are ignored. With the ${...%...} and ${...%%...} forms, the
starting position for the match moves backwards from the end as the index increases,
while with the other forms it moves forward from the start.
Hence with the string

which switch is the right switch for Ipswich?
substitutions of the form ${(SI:N:)string#w*ch} as N increases from 1 will match
and remove ‘which’, ‘witch’, ‘witch’ and ‘wich’; the form using ‘##’ will match
and remove ‘which switch is the right switch for Ipswich’, ‘witch is the
right switch for Ipswich’, ‘witch for Ipswich’and ‘wich’. The form using ‘%’
will remove the same matches as for ‘#’, but in reverse order, and the form using
‘%%’ will remove the same matches as for ‘##’ in reverse order.
Include the index of the beginning of the match in the result.
Include the index one character past the end of the match in the result (note this is
inconsistent with other uses of parameter index).
Include the matched portion in the result.
Include the length of the match in the result.
Include the unmatched portion in the result (the Rest).

14.3.2 Rules

Here is a summary of the rules for substitution; this assumes that braces are present around
the substitution, i.e. ${...}. Some particular examples are given below. Note that the Zsh
Development Group accepts no responsibility for any brain damage which may occur during the
reading of the following rules.

1. Nested substitution

If multiple nested ${...} forms are present, substitution is performed from the inside
outwards. At each level, the substitution takes account of whether the current value
is a scalar or an array, whether the whole substitution is in double quotes, and what
flags are supplied to the current level of substitution, just as if the nested substitution
were the outermost. The flags are not propagated up to enclosing substitutions; the
nested substitution will return either a scalar or an array as determined by the flags,
possibly adjusted for quoting. All the following steps take place where applicable
at all levels of substitution.

Note that, unless the ‘(P)’ flag is present, the flags and any subscripts apply di-
rectly to the value of the nested substitution; for example, the expansion ${${foo}}
behaves exactly the same as ${foo}. When the ‘(P)’ flag is present in a nested sub-
stitution, the other substitution rules are applied to the value before it is interpreted
as a name, so ${${(P)foo}} may differ from ${(P)foo}.

Chapter 14: Expansion 58

At each nested level of substitution, the substituted words undergo all forms of
single-word substitution (i.e. not filename generation), including command substi-
tution, arithmetic expansion and filename expansion (i.e. leading ~ and =). Thus,
for example, ${${:-=cat}:h} expands to the directory where the cat program re-
sides. (Explanation: the internal substitution has no parameter but a default value
=cat, which is expanded by filename expansion to a full path; the outer substitution
then applies the modifier :h and takes the directory part of the path.)

2. Internal parameter flags
Any parameter flags set by one of the typeset family of commands, in particular
the -L, -R, -Z, —u and -1 options for padding and capitalization, are applied directly
to the parameter value. Note these flags are options to the command, e.g. ‘typeset
-Z’; they are not the same as the flags used within parameter substitutions.

At the outermost level of substitution, the ‘(P)’ flag (rule 4.) ignores these transfor-
mations and uses the unmodified value of the parameter as the name to be replaced.
This is usually the desired behavior because padding may make the value syntacti-
cally illegal as a parameter name, but if capitalization changes are desired, use the
${${(P)foo}} form (rule 25.).

3. Parameter subscripting

If the value is a raw parameter reference with a subscript, such as ${var[3]}, the
effect of subscripting is applied directly to the parameter. Subscripts are evaluated
left to right; subsequent subscripts apply to the scalar or array value yielded by the
previous subscript. Thus if var is an array, ${var [1] [2]7} is the second character of
the first word, but ${var[2,4] [2]} is the entire third word (the second word of the
range of words two through four of the original array). Any number of subscripts
may appear. Flags such as ‘(k)’ and ‘(v)’ which alter the result of subscripting are
applied.

4. Parameter name replacement
At the outermost level of nesting only, the ‘(P)’ flag is applied. This treats the value
so far as a parameter name (which may include a subscript expression) and replaces
that with the corresponding value. This replacement occurs later if the ‘(P)’ flag
appears in a nested substitution.

If the value so far names a parameter that has internal flags (rule 2.), those internal
flags are applied to the new value after replacement.

5. Double-quoted joining
If the value after this process is an array, and the substitution appears in double
quotes, and neither an (@)’ flag nor a ‘#’ length operator is present at the current
level, then words of the value are joined with the first character of the parameter
$IFS, by default a space, between each word (single word arrays are not modified).
If the ‘(j)’ flag is present, that is used for joining instead of $IFS.

6. Nested subscripting
Any remaining subscripts (i.e. of a nested substitution) are evaluated at this point,
based on whether the value is an array or a scalar. As with 3., multiple subscripts
can appear. Note that ${foo[2,4] [2]} is thus equivalent to ${${foo[2,4]13}[2]1}
and also to "${${(@)foo[2,4]1}[2]}" (the nested substitution returns an array in
both cases), but not to "${${foo[2,41}[2]1}" (the nested substitution returns a
scalar because of the quotes).

Chapter 14: Expansion 59

7.

8.

9.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Modifiers
Any modifiers, as specified by a trailing ‘#’, ‘%’, ‘/’ (possibly doubled) or by a set of
modifiers of the form ‘:..." (see Section 14.1.4 [Modifiers], page 42, in Section 14.1
[History Expansion], page 40), are applied to the words of the value at this level.

Character evaluation
Any ‘(#)’ flag is applied, evaluating the result so far numerically as a character.

Length Any initial ‘#" modifier, i.e. in the form ${#var}, is used to evaluate the length of
the expression so far.

. Forced joining
If the ‘(j)’ flag is present, or no ‘(j)’ flag is present but the string is to be split as
given by rule 11., and joining did not take place at rule 5., any words in the value
are joined together using the given string or the first character of $IFS if none. Note
that the ‘(F)’ flag implicitly supplies a string for joining in this manner.

Simple word splitting
If one of the ‘(s)’ or ‘(f)’ flags are present, or the ‘=’ specifier was present (e.g.
${=var}), the word is split on occurrences of the specified string, or (for = with
neither of the two flags present) any of the characters in $IFS.

If no ‘(s)’, ‘(£f)’ or ‘=" was given, but the word is not quoted and the option
SH_WORD_SPLIT is set, the word is split on occurrences of any of the characters in
$IFS. Note this step, too, takes place at all levels of a nested substitution.

Case modification
Any case modification from one of the flags ‘(L)’, ‘(U)’ or ‘(C)’ is applied.

Escape sequence replacement
First any replacements from the ‘(g)’ flag are performed, then any prompt-style
formatting from the (%)’ family of flags is applied.

Quote application
Any quoting or unquoting using ‘(q)’ and ‘(Q)’ and related flags is applied.

Directory naming
Any directory name substitution using ‘ (D)’ flag is applied.

Visibility enhancement
Any modifications to make characters visible using the ‘(V)’ flag are applied.

Lezxical word splitting
If the ’(z)’ flag or one of the forms of the (Z)’ flag is present, the word is split as
if it were a shell command line, so that quotation marks and other metacharacters
are used to decide what constitutes a word. Note this form of splitting is entirely
distinct from that described by rule 11.: it does not use $IFS, and does not cause
forced joining.

Uniqueness
If the result is an array and the ‘(u)’ flag was present, duplicate elements are
removed from the array.

Ordering
If the result is still an array and one of the ‘(0)’ or ‘(0)’ flags was present, the array
is reordered.

RC_EXPAND_PARAM
At this point the decision is made whether any resulting array elements are to
be combined element by element with surrounding text, as given by either the
RC_EXPAND_PARAM option or the ‘~’ flag.

Chapter 14: Expansion 60

21. Re-evaluation
Any ‘(e)’ flag is applied to the value, forcing it to be re-examined for new parameter
substitutions, but also for command and arithmetic substitutions.

22. Padding
Any padding of the value by the ‘(1.fill.)’ or ‘(r.fill.)’ flags is applied.

23. Semantic joining
In contexts where expansion semantics requires a single word to result, all words
are rejoined with the first character of IFS between. So in ‘${(P)${(f)1lines}}’
the value of ${1ines} is split at newlines, but then must be joined again before the
‘(P)’ flag can be applied.

If a single word is not required, this rule is skipped.

24. Empty argument remowval
If the substitution does not appear in double quotes, any resulting zero-length ar-
gument, whether from a scalar or an element of an array, is elided from the list of
arguments inserted into the command line.

Strictly speaking, the removal happens later as the same happens with other forms
of substitution; the point to note here is simply that it occurs after any of the above
parameter operations.

25. Nested parameter name replacement
If the ‘(P)’ flag is present and rule 4. has not applied, the value so far is treated
as a parameter name (which may include a subscript expression) and replaced with
the corresponding value, with internal flags (rule 2.) applied to the new value.

14.3.3 Examples

The flag £ is useful to split a double-quoted substitution line by line. For example,
${(£)"$(<file) "} substitutes the contents of file divided so that each line is an element of
the resulting array. Compare this with the effect of $(<file) alone, which divides the file up
by words, or the same inside double quotes, which makes the entire content of the file a single
string.

The following illustrates the rules for nested parameter expansions. Suppose that $foo contains
the array (bar baz):

"${(@ ${foo}[1]}"
This produces the result b. First, the inner substitution "${foo}", which has no
array (@) flag, produces a single word result "bar baz". The outer substitution
"${(@)...[11}" detects that this is a scalar, so that (despite the ‘(@)’ flag) the
subscript picks the first character.

"${${(@)foo[1]1}"
This produces the result ‘bar’. In this case, the inner substitution "${(@)fool}" pro-
duces the array ‘(bar baz)’. The outer substitution "${...[1]}" detects that this
is an array and picks the first word. This is similar to the simple case "${foo[1]}".

As an example of the rules for word splitting and joining, suppose $foo contains the array ‘ (ax1
bx1)’. Then

${(s/x/)foo}

produces the words ‘a’, ‘1 b’ and ‘1’

${(j/x/s/x/)foo}

produces ‘a’, ‘1’, ‘b’ and ‘1’.

Chapter 14: Expansion 61

${(s/x/)foohh1*}
produces ‘a’ and ¢ b’ (note the extra space). As substitution occurs before either
joining or splitting, the operation first generates the modified array (ax bx), which
is joined to give "ax bx", and then split to give ‘a’, * b’ and ‘. The final empty
string will then be elided, as it is not in double quotes.

14.4 Command Substitution

A command enclosed in parentheses preceded by a dollar sign, like ‘$(...)’, or quoted with grave
accents, like ‘“...¢", is replaced with its standard output, with any trailing newlines deleted. If
the substitution is not enclosed in double quotes, the output is broken into words using the IFS
parameter.

The substitution ‘$(cat foo)’ may be replaced by the faster ‘$(<foo)’. In this case foo under-
goes single word shell expansions (parameter ezpansion, command substitution and arithmetic
expansion), but not filename generation.

If the option GLOB_SUBST is set, the result of any unquoted command substitution, including
the special form just mentioned, is eligible for filename generation.

14.5 Arithmetic Expansion

A string of the form ‘$[exp]’ or ‘$((exp))’ is substituted with the value of the arithmetic
expression exp. exp is subjected to parameter expansion, command substitution and arithmetic
expansion before it is evaluated. See Chapter 11 [Arithmetic Evaluation], page 28.

14.6 Brace Expansion

A string of the form ‘foo{xx,yy,zz}bar’ is expanded to the individual words ‘fooxxbar’, ‘fooyy-
bar’ and ‘foozzbar’. Left-to-right order is preserved. This construct may be nested. Commas
may be quoted in order to include them literally in a word.

An expression of the form ‘{nl..n2}’, where nl and n2 are integers, is expanded to every
number between nl and n2 inclusive. If either number begins with a zero, all the resulting
numbers will be padded with leading zeroes to that minimum width, but for negative numbers
the - character is also included in the width. If the numbers are in decreasing order the resulting
sequence will also be in decreasing order.

An expression of the form ‘{nl..n2..n3}’, where nl, n2, and n3 are integers, is expanded as
above, but only every n3th number starting from nl is output. If n3 is negative the numbers
are output in reverse order, this is slightly different from simply swapping nl and n2 in the case
that the step n3 doesn’t evenly divide the range. Zero padding can be specified in any of the
three numbers, specifying it in the third can be useful to pad for example ‘{-99..100..01}
which is not possible to specify by putting a 0 on either of the first two numbers (i.e. pad to
two characters).

An expression of the form ‘{cl..c2}’, where cl and c2 are single characters (which may be
multibyte characters), is expanded to every character in the range from cl to ¢2 in whatever
character sequence is used internally. For characters with code points below 128 this is US
ASCII (this is the only case most users will need). If any intervening character is not printable,
appropriate quotation is used to render it printable. If the character sequence is reversed, the
output is in reverse order, e.g. ‘{d..a}’ is substituted as ‘d c b a’.

If a brace expression matches none of the above forms, it is left unchanged, unless the option
BRACE_CCL (an abbreviation for ‘brace character class’) is set. In that case, it is expanded to a
list of the individual characters between the braces sorted into the order of the characters in the
ASCII character set (multibyte characters are not currently handled). The syntax is similar to

Chapter 14: Expansion 62

a [...] expression in filename generation: ‘-’ is treated specially to denote a range of characters,

but ‘*” or ‘!’ as the first character is treated normally. For example, ‘{abcdef0-9}’ expands to
16words0 123456789 abcdef.

Note that brace expansion is not part of filename generation (globbing); an expression such as
x/{foo,bar} is split into two separate words */foo and */bar before filename generation takes
place. In particular, note that this is liable to produce a ‘no match’ error if either of the two
expressions does not match; this is to be contrasted with */(foolbar), which is treated as a
single pattern but otherwise has similar effects.

To combine brace expansion with array expansion, see the ${"spec} form described in
Section 14.3 [Parameter Expansion], page 46, above.

14.7 Filename Expansion

Each word is checked to see if it begins with an unquoted ‘~’. If it does, then the word up to
a ‘/’, or the end of the word if there is no ‘/’, is checked to see if it can be substituted in one
of the ways described here. If so, then the ‘~” and the checked portion are replaced with the
appropriate substitute value.

A ‘77 by itself is replaced by the value of $HOME. A ‘~’ followed by a ‘+’ or a ‘=’ is replaced by
current or previous working directory, respectively.

A 7’ followed by a number is replaced by the directory at that position in the directory stack.
‘~0’ is equivalent to ‘“+’, and ‘"1’ is the top of the stack. ‘~+’ followed by a number is replaced by
the directory at that position in the directory stack. ‘“+0’ is equivalent to ‘“+’, and ‘~+1’ is the

top of the stack. ‘-’ followed by a number is replaced by the directory that many positions from
the bottom of the stack. ‘“-0’ is the bottom of the stack. The PUSHD_MINUS option exchanges
the effects of ‘“+’ and ‘“-’ where they are followed by a number.

14.7.1 Dynamic named directories

If the function zsh_directory_name exists, or the shell variable
zsh_directory_name_functions exists and contains an array of function names,
then the functions are used to implement dynamic directory naming. The functions are tried
in order until one returns status zero, so it is important that functions test whether they can
handle the case in question and return an appropriate status.

A ‘7’ followed by a string namstr in unquoted square brackets is treated specially as a dynamic
directory name. Note that the first unquoted closing square bracket always terminates namstr.
The shell function is passed two arguments: the string n (for name) and namstr. It should either
set the array reply to a single element which is the directory corresponding to the name and
return status zero (executing an assignment as the last statement is usually sufficient), or it
should return status non-zero. In the former case the element of reply is used as the directory;
in the latter case the substitution is deemed to have failed. If all functions fail and the option
NOMATCH is set, an error results.

The functions defined as above are also used to see if a directory can be turned into a name, for
example when printing the directory stack or when expanding %~ in prompts. In this case each
function is passed two arguments: the string d (for directory) and the candidate for dynamic
naming. The function should either return non-zero status, if the directory cannot be named by
the function, or it should set the array reply to consist of two elements: the first is the dynamic
name for the directory (as would appear within ‘~[...]1’), and the second is the prefix length of
the directory to be replaced. For example, if the trial directory is /home/myname/src/zsh and
the dynamic name for /home/myname/src (which has 16 characters) is s, then the function sets

reply=(s 16)

Chapter 14: Expansion 63

The directory name so returned is compared with possible static names for parts of the directory
path, as described below; it is used if the prefix length matched (16 in the example) is longer
than that matched by any static name.

It is not a requirement that a function implements both n and d calls; for example, it might be
appropriate for certain dynamic forms of expansion not to be contracted to names. In that case
any call with the first argument d should cause a non-zero status to be returned.

The completion system calls ‘zsh_directory_name c’ followed by equivalent calls to elements
of the array zsh_directory_name_functions, if it exists, in order to complete dynamic names
for directories. The code for this should be as for any other completion function as described in
Chapter 20 [Completion System]|, page 213.

As a working example, here is a function that expands any dynamic names beginning with the
string p: to directories below /home/pws/perforce. In this simple case a static name for the
directory would be just as effective.

zsh_directory_name() {
emulate -L zsh
setopt extendedglob
local -a match mbegin mend
if [[$1 = d 1]; then
turn the directory into a name
if [[$2 = (#b) (/home/pws/perforce/) ([*/]1##)* 1]; then
typeset -ga reply
reply=(p:$match[2] $((${#match[1]} + ${#match[2]})))
else
return 1
fi
elif [[$1 =n 1]; then
turn the name into a directory
[[$2 '= (#b)p:(?7%) 1] && return 1
typeset -ga reply
reply=(/home/pws/perforce/$match[1])
elif [[$1 = c 1]; then
complete names
local expl
local -a dirs
dirs=(/home/pws/perforce/*(/:t))
dirs=(p:${"dirs})
_wanted dynamic-dirs expl ’dynamic directory’ compadd -S\] -a dirs
return
else
return 1
fi
return O

}

14.7.2 Static named directories

A ‘7 followed by anything not already covered consisting of any number of alphanumeric char-
acters or underscore (‘_’), hyphen (‘-’), or dot (‘.”) is looked up as a named directory, and
replaced by the value of that named directory if found. Named directories are typically home
directories for users on the system. They may also be defined if the text after the ‘~’ is the
name of a string shell parameter whose value begins with a ‘/’. Note that trailing slashes will

be removed from the path to the directory (though the original parameter is not modified).

Chapter 14: Expansion 64

It is also possible to define directory names using the -d option to the hash builtin.

When the shell prints a path (e.g. when expanding %~ in prompts or when printing the directory
stack), the path is checked to see if it has a named directory as its prefix. If so, then the prefix
portion is replaced with a ‘=’ followed by the name of the directory. The shorter of the two ways
of referring to the directory is used, i.e. either the directory name or the full path; the name is
used if they are the same length. The parameters $PWD and $O0LDPWD are never abbreviated in
this fashion.

14.7.3 ‘=’ expansion

If a word begins with an unquoted ‘=" and the EQUALS option is set, the remainder of the word
is taken as the name of a command. If a command exists by that name, the word is replaced by
the full pathname of the command.

14.7.4 Notes

Filename expansion is performed on the right hand side of a parameter assignment, including

those appearing after commands of the typeset family. In this case, the right hand side will

be treated as a colon-separated list in the manner of the PATH parameter, so that a ‘~’ or an ‘=’
)

following a *:’ is eligible for expansion. All such behaviour can be disabled by quoting the ‘~’,
the ‘=", or the whole expression (but not simply the colon); the EQUALS option is also respected.

If the option MAGIC_EQUAL_SUBST is set, any unquoted shell argument in the form ‘identi-
fier=expression’ becomes eligible for file expansion as described in the previous paragraph. Quot-
ing the first ‘=" also inhibits this.

14.8 Filename Generation

If a word contains an unquoted instance of one of the characters ‘*’, ‘C, ‘|’, <’, ‘[’, or ‘?,
it is regarded as a pattern for filename generation, unless the GLOB option is unset. If the
EXTENDED_GLOB option is set, the ‘*” and ‘#’ characters also denote a pattern; otherwise they
are not treated specially by the shell.

The word is replaced with a list of sorted filenames that match the pattern. If no matching
pattern is found, the shell gives an error message, unless the NULL_GLOB option is set, in which
case the word is deleted; or unless the NOMATCH option is unset, in which case the word is left
unchanged.

In filename generation, the character ‘/’ must be matched explicitly; also, a .’ must be matched
explicitly at the beginning of a pattern or after a ‘/’, unless the GLOB_DOTS option is set. No
filename generation pattern matches the files ‘.” or ‘. .’. In other instances of pattern matching,
the /7 and ‘.’ are not treated specially.

14.8.1 Glob Operators

* Matches any string, including the null string.
? Matches any character.
[...] Matches any of the enclosed characters. Ranges of characters can be specified by

separating two characters by a ‘=’. A ‘=’ or ‘]’ may be matched by including it as the

first character in the list. There are also several named classes of characters, in the
form ‘[:name:]’ with the following meanings. The first set use the macros provided
by the operating system to test for the given character combinations, including any
modifications due to local language settings, see man page ctype(3):

[:alnum:]
The character is alphanumeric

Chapter 14: Expansion 65

[:alpha:]
The character is alphabetic

[:ascii:]
The character is 7-bit, i.e. is a single-byte character without the top bit
set.

[:blank:]
The character is a blank character

[:cntrl:]

The character is a control character
[:digit:]

The character is a decimal digit

[:graph:]
The character is a printable character other than whitespace
[:lower:]
The character is a lowercase letter
[:print:]
The character is printable
[:punct:]
The character is printable but neither alphanumeric nor whitespace

[:space:]
The character is whitespace

[:upper:]

The character is an uppercase letter
[:xdigit:]

The character is a hexadecimal digit

Another set of named classes is handled internally by the shell and is not sensitive
to the locale:

[:IDENT:]
The character is allowed to form part of a shell identifier, such as a
parameter name

[:IFS:] The character is used as an input field separator, i.e. is contained in
the IFS parameter

[: IFSSPACE:]
The character is an IFS white space character; see the documentation
for IFS in Section 15.6 [Parameters Used By The Shell], page 88.

[: INCOMPLETE:]
Matches a byte that starts an incomplete multibyte character. Note that
there may be a sequence of more than one bytes that taken together form
the prefix of a multibyte character. To test for a potentially incomplete
byte sequence, use the pattern ‘[[:INCOMPLETE:]]*’. This will never
match a sequence starting with a valid multibyte character.

[:INVALID:]
Matches a byte that does not start a valid multibyte character. Note
this may be a continuation byte of an incomplete multibyte character
as any part of a multibyte string consisting of invalid and incomplete
multibyte characters is treated as single bytes.

Chapter 14: Expansion 66

..

x|y

X"y

x#

XH##

[:WORD:] The character is treated as part of a word; this test is sensitive to the
value of the WORDCHARS parameter

Note that the square brackets are additional to those enclosing the whole set of
characters, so to test for a single alphanumeric character you need ‘[[:alnum:]]’.
Named character sets can be used alongside other types, e.g. ‘[[:alpha:]10-9]".

Like [...], except that it matches any character which is not in the given set.

Matches any number in the range x to y, inclusive. Either of the numbers may be
omitted to make the range open-ended; hence ‘<->’ matches any number. To match
individual digits, the [...] form is more efficient.

Be careful when using other wildcards adjacent to patterns of this form; for example,
<0-9>* will actually match any number whatsoever at the start of the string, since
the ‘<0-9>’ will match the first digit, and the ‘*’ will match any others. This is a
trap for the unwary, but is in fact an inevitable consequence of the rule that the
longest possible match always succeeds. Expressions such as ‘<0-9>[~[:digit:]1]1#’
can be used instead.

Matches the enclosed pattern. This is used for grouping. If the KSH_GLOB option is
set, then a ‘@, “*’, ‘4’ ‘?” or ‘!’ immediately preceding the ‘(C is treated specially,
as detailed below. The option SH_GLOB prevents bare parentheses from being used
in this way, though the KSH_GLOB option is still available.

Note that grouping cannot extend over multiple directories: it is an error to have
a ‘/’ within a group (this only applies for patterns used in filename generation).
There is one exception: a group of the form (pat/)# appearing as a complete path
segment can match a sequence of directories. For example, foo/ (a*/)#bar matches
foo/bar, foo/any/bar, foo/any/anyother/bar, and so on.

Matches either x or y. This operator has lower precedence than any other. The
‘|’ character must be within parentheses, to avoid interpretation as a pipeline. The
alternatives are tried in order from left to right.

(Requires EXTENDED_GLOB to be set.) Matches anything except the pattern x. This
has a higher precedence than ‘/’, so ‘“foo/bar’ will search directories in ‘.’ except
‘./foo’ for a file named ‘bar’.

(Requires EXTENDED_GLOB to be set.) Match anything that matches the pattern
x but does not match y. This has lower precedence than any operator except
‘I, so ‘*/*~foo/bar’ will search for all files in all directories in ‘.’ and then ex-
clude ‘foo/bar’ if there was such a match. Multiple patterns can be excluded by
‘foo~bar~baz’. In the exclusion pattern (y), ‘/” and ‘.’ are not treated specially the
way they usually are in globbing.

(Requires EXTENDED_GLOB to be set.) Matches zero or more occurrences of the
pattern x. This operator has high precedence; ‘12#’ is equivalent to ‘1(2#)’, rather
than ‘(12)#’. It is an error for an unquoted ‘#’ to follow something which cannot
be repeated; this includes an empty string, a pattern already followed by ‘##’, or
parentheses when part of a KSH_GLOB pattern (for example, ‘! (foo)#’ is invalid and
must be replaced by ‘* (! (fo0))’).

(Requires EXTENDED_GLOB to be set.) Matches one or more occurrences of the pattern
x. This operator has high precedence; ‘12##’ is equivalent to ‘1 (2##)’, rather than
‘(12)##’. No more than two active ‘#’ characters may appear together. (Note the
potential clash with glob qualifiers in the form ‘1 (2##)’ which should therefore be
avoided.)

Chapter 14: Expansion 67

14.8.2 ksh-like Glob Operators
If the KSH_GLOB option is set, the effects of parentheses can be modified by a preceding ‘@’, ‘*’,

‘+7¢?” or ‘1I’. This character need not be unquoted to have special effects, but the ‘'’ must be.
@(...) Match the pattern in the parentheses. (Like ‘(...)".)
*(...) Match any number of occurrences. (Like ‘(...)#’, except that recursive directory

searching is not supported.)

+(...) Match at least one occurrence. (Like ‘(...)##’, except that recursive directory search-
ing is not supported.)

7(..) Match zero or one occurrence. (Like ‘(]...)".)

1) Match anything but the expression in parentheses. (Like ‘(~(...))".)

14.8.3 Precedence

The precedence of the operators given above is (highest) *7, ¢/, *’, |’ (lowest); the remaining
operators are simply treated from left to right as part of a string, with ‘#’ and ‘## applying
to the shortest possible preceding unit (i.e. a character, ‘?’, ‘[...]7, ‘<...>’, or a parenthesised
expression). As mentioned above, a ‘/’ used as a directory separator may not appear inside
parentheses, while a ‘|’ must do so; in patterns used in other contexts than filename generation
(for example, in case statements and tests within ‘[[...]]’), a ¢/’ is not special; and ‘/’ is also
not special after a ‘~’ appearing outside parentheses in a filename pattern.

14.8.4 Globbing Flags

There are various flags which affect any text to their right up to the end of the enclosing group
or to the end of the pattern; they require the EXTENDED_GLOB option. All take the form (#X)
where X may have one of the following forms:

i Case insensitive: upper or lower case characters in the pattern match upper or lower
case characters.

1 Lower case characters in the pattern match upper or lower case characters; upper
case characters in the pattern still only match upper case characters.

I Case sensitive: locally negates the effect of i or 1 from that point on.

b Activate backreferences for parenthesised groups in the pattern; this does not work
in filename generation. When a pattern with a set of active parentheses is matched,
the strings matched by the groups are stored in the array $match, the indices of the
beginning of the matched parentheses in the array $mbegin, and the indices of the
end in the array $mend, with the first element of each array corresponding to the
first parenthesised group, and so on. These arrays are not otherwise special to the
shell. The indices use the same convention as does parameter substitution, so that
elements of $mend and $mbegin may be used in subscripts; the KSH_ARRAYS option
is respected. Sets of globbing flags are not considered parenthesised groups; only
the first nine active parentheses can be referenced.

For example,

foo="a_string with_a_message"

if [[$foo = (alan)_(#b)(x) 1]; then
print ${foo[$mbegin[1],$mend[1]1]}

fi

prints ‘string_with_a_message’. Note that the first set of parentheses is before
the (#b) and does not create a backreference.

Chapter 14: Expansion 68

cN,M

Backreferences work with all forms of pattern matching other than filename gen-
eration, but note that when performing matches on an entire array, such as
${array#pattern}, or a global substitution, such as ${param//pat/repl}, only the
data for the last match remains available. In the case of global replacements this
may still be useful. See the example for the m flag below.

The numbering of backreferences strictly follows the order of the opening parentheses
from left to right in the pattern string, although sets of parentheses may be nested.
There are special rules for parentheses followed by ‘#’ or ‘##. Only the last match
of the parenthesis is remembered: for example, in ‘[[abab = (#b)([abl)# 11’,
only the final ‘b’ is stored in match[1]. Thus extra parentheses may be necessary
to match the complete segment: for example, use ‘X((ablcd)#)Y’ to match a whole
string of either ‘ab’ or ‘cd’ between ‘X’ and ‘Y’, using the value of $match[1] rather
than $match[2].

If the match fails none of the parameters is altered, so in some cases it may be
necessary to initialise them beforehand. If some of the backreferences fail to match
— which happens if they are in an alternate branch which fails to match, or if they
are followed by # and matched zero times — then the matched string is set to the
empty string, and the start and end indices are set to -1.

Pattern matching with backreferences is slightly slower than without.
Deactivate backreferences, negating the effect of the b flag from that point on.

The flag (#cN,M) can be used anywhere that the # or ## operators can be used
except in the expressions ‘(x/)# and ‘(*/)## in filename generation, where ‘/’
has special meaning; it cannot be combined with other globbing flags and a bad
pattern error occurs if it is misplaced. It is equivalent to the form {N,M} in
regular expressions. The previous character or group is required to match between
N and M times, inclusive. The form (#cN) requires exactly N matches; (#c, M) is
equivalent to specifying N as 0; (#cN,) specifies that there is no maximum limit
on the number of matches.

Set references to the match data for the entire string matched; this is similar to
backreferencing and does not work in filename generation. The flag must be in
effect at the end of the pattern, i.e. not local to a group. The parameters $MATCH,
$MBEGIN and $MEND will be set to the string matched and to the indices of the
beginning and end of the string, respectively. This is most useful in parameter
substitutions, as otherwise the string matched is obvious.

For example,

arr=(veldt jynx grimps waqf zho buck)

print ${arr//(#m) [aeioul /${(U)MATCH}}
forces all the matches (i.e. all vowels) into uppercase, printing ‘vEldt jynx grImps
wAgf zh0 bUck’.

Unlike backreferences, there is no speed penalty for using match references, other
than the extra substitutions required for the replacement strings in cases such as
the example shown.

Deactivate the m flag, hence no references to match data will be created.

Approximate matching: num errors are allowed in the string matched by the pattern.
The rules for this are described in the next subsection.

Unlike the other flags, these have only a local effect, and each must appear on its
own: ‘(#s)’ and ‘(#e)’ are the only valid forms. The ‘(#s)’ flag succeeds only
at the start of the test string, and the ‘(#e)’ flag succeeds only at the end of the

Chapter 14: Expansion 69

(~)

test string; they correspond to and ‘$’ in standard regular expressions. They
are useful for matching path segments in patterns other than those in filename
generation (where path segments are in any case treated separately). For example,
‘*((#s) /) test ((#e) | /) *’ matches a path segment ‘test’ in any of the following
strings: test, test/at/start, at/end/test, in/test/middle.

Another use is in parameter substitution; for example ‘${array/ (#s) A*Z (#e)}’ will
remove only elements of an array which match the complete pattern ‘A*Z’. There
are other ways of performing many operations of this type, however the combination
of the substitution operations ‘/’ and ‘//’ with the ‘(#s)’ and ‘(#e)’ flags provides
a single simple and memorable method.

Note that assertions of the form ‘(" (#s))’ also work, i.e. match anywhere except
at the start of the string, although this actually means ‘anything except a zero-
length portion at the start of the string’; you need to use ‘(""~ (#s))’ to match a
zero-length portion of the string not at the start.

q A ‘q’ and everything up to the closing parenthesis of the globbing flags are ignored
by the pattern matching code. This is intended to support the use of glob qualifiers,
see below. The result is that the pattern ‘(#b) (*).c(#q.)’ can be used both for
globbing and for matching against a string. In the former case, the ‘(#q.)’ will
be treated as a glob qualifier and the ‘(#b)’ will not be useful, while in the latter
case the ‘(#b)’ is useful for backreferences and the ‘(#q.)’ will be ignored. Note
that colon modifiers in the glob qualifiers are also not applied in ordinary pattern
matching.

u Respect the current locale in determining the presence of multibyte characters in a
pattern, provided the shell was compiled with MULTIBYTE_SUPPORT. This overrides
the MULTIBYTE option; the default behaviour is taken from the option. Compare U.
(Mnemonic: typically multibyte characters are from Unicode in the UTF-8 encoding,
although any extension of ASCII supported by the system library may be used.)

U All characters are considered to be a single byte long. The opposite of u. This
overrides the MULTIBYTE option.

For example, the test string fooxx can be matched by the pattern (#i)F00XX, but not by
(#1)FOOXX, (#i)FO0(#I)XX or ((#i)F0O0X)X. The string (#ia2)readme specifies case-insensitive
matching of readme with up to two errors.

When using the ksh syntax for grouping both KSH_GLOB and EXTENDED_GLOB must be set and
the left parenthesis should be preceded by @. Note also that the flags do not affect letters inside
[...] groups, in other words (#i) [a-z] still matches only lowercase letters. Finally, note that
when examining whole paths case-insensitively every directory must be searched for all files
which match, so that a pattern of the form (#i)/foo/bar/... is potentially slow.

14.8.5 Approximate Matching

When matching approximately, the shell keeps a count of the errors found, which cannot exceed
the number specified in the (#anum) flags. Four types of error are recognised:

1. Different characters, as in fooxbar and fooybar.

2. Transposition of characters, as in banana and abnana.

3. A character missing in the target string, as with the pattern road and target string
rod.

4. An extra character appearing in the target string, as with stove and strove.

Chapter 14: Expansion 70

Thus, the pattern (#a3)abcd matches dcba, with the errors occurring by using the first rule
twice and the second once, grouping the string as [d] [cb] [a] and [a] [bc] [d].

Non-literal parts of the pattern must match exactly, including characters in character ranges:
hence (#a1)77? matches strings of length four, by applying rule 4 to an empty part of the
pattern, but not strings of length two, since all the ? must match. Other characters which must
match exactly are initial dots in filenames (unless the GLOB_DOTS option is set), and all slashes
in filenames, so that a/bc is two errors from ab/c (the slash cannot be transposed with another
character). Similarly, errors are counted separately for non-contiguous strings in the pattern, so
that (ablcd)ef is two errors from aebf.

When using exclusion via the ~ operator, approximate matching is treated entirely separately
for the excluded part and must be activated separately. Thus, (#a1)README“READ_ME matches
READ.ME but not READ_ME, as the trailing READ_ME is matched without approximation. However,
(#a1)README~ (#a1)READ_ME does not match any pattern of the form READ?ME as all such forms
are now excluded.

Apart from exclusions, there is only one overall error count; however, the maximum er-
rors allowed may be altered locally, and this can be delimited by grouping. For example,
(#al)cat ((#a0)dog) fox allows one error in total, which may not occur in the dog section,
and the pattern (#al)cat(#a0)dog(#al)fox is equivalent. Note that the point at which an
error is first found is the crucial one for establishing whether to use approximation; for ex-
ample, (#al)abc(#a0)xyz will not match abcdxyz, because the error occurs at the ‘x’, where
approximation is turned off.

Entire path segments may be matched approximately, SO that
‘(#al)/foo/d/is/available/at/the/bar’ allows one error in any path segment.
This is much less efficient than without the (#al1), however, since every directory in the path
must be scanned for a possible approximate match. It is best to place the (#al) after any path
segments which are known to be correct.

14.8.6 Recursive Globbing

A pathname component of the form ‘(foo/)# matches a path consisting of zero or more direc-
tories matching the pattern foo.

As a shorthand, ‘**/’ is equivalent to ‘(*/)#’; note that this therefore matches files in the
current directory as well as subdirectories. Thus:

ls -1d -- (*/)#bar
or
ls -1d —- **x/bar

does a recursive directory search for files named ‘bar’ (potentially including the file ‘bar’ in the
current directory). This form does not follow symbolic links; the alternative form ‘*x**/’ does,
but is otherwise identical. Neither of these can be combined with other forms of globbing within
the same path segment; in that case, the ‘*’ operators revert to their usual effect.

Even shorter forms are available when the option GLOB_STAR_SHORT is set. In that case if no
/ immediately follows a ** or *** they are treated as if both a / plus a further * are present.
Hence:

setopt GLOBSTARSHORT
1s -1d —- **.c

is equivalent to

1ls -1d —- **/x.c

Chapter 14: Expansion 71

14.8.7 Glob Qualifiers

Patterns used for filename generation may end in a list of qualifiers enclosed in parentheses. The
qualifiers specify which filenames that otherwise match the given pattern will be inserted in the
argument list.

If the option BARE_GLOB_QUAL is set, then a trailing set of parentheses containing no ‘|’ or ‘(’
characters (or ‘=’ if it is special) is taken as a set of glob qualifiers. A glob subexpression that
would normally be taken as glob qualifiers, for example ‘("x)’, can be forced to be treated as
part of the glob pattern by doubling the parentheses, in this case producing ‘(("x))’.

If the option EXTENDED_GLOB is set, a different syntax for glob qualifiers is available, namely
‘(#gx)’ where x is any of the same glob qualifiers used in the other format. The qualifiers must
still appear at the end of the pattern. However, with this syntax multiple glob qualifiers may
be chained together. They are treated as a logical AND of the individual sets of flags. Also,
as the syntax is unambiguous, the expression will be treated as glob qualifiers just as long any
parentheses contained within it are balanced; appearance of ‘|’, ‘(" or ‘~’ does not negate the
effect. Note that qualifiers will be recognised in this form even if a bare glob qualifier exists at
the end of the pattern, for example ‘*(#gx*) (.)’ will recognise executable regular files if both
options are set; however, mixed syntax should probably be avoided for the sake of clarity. Note
that within conditions using the ‘[[’ form the presence of a parenthesised expression (#q...) at
the end of a string indicates that globbing should be performed; the expression may include glob
qualifiers, but it is also valid if it is simply (#q). This does not apply to the right hand side of
pattern match operators as the syntax already has special significance.

A qualifier may be any one of the following;:

/ directories

F ‘full’ (i.e. non-empty) directories. Note that the opposite sense ("F) expands to
empty directories and all non-directories. Use (/°F) for empty directories.
plain files

¢ symbolic links

= sockets

p named pipes (FIFOs)

* executable plain files (0100 or 0010 or 0001)

% device files (character or block special)

%o block special files

he character special files

T owner-readable files (0400)

W owner-writable files (0200)

X owner-executable files (0100)

A group-readable files (0040)

I group-writable files (0020)

E group-executable files (0010)

R world-readable files (0004)

W world-writable files (0002)

X world-executable files (0001)

Chapter 14: Expansion 72

fspec

estring
+cmd

setuid files (04000)
setgid files (02000)
files with the sticky bit (01000)

files with access rights matching spec. This spec may be a octal number optionally
preceded by a ‘=", a ‘“+’, or a ‘=’. If none of these characters is given, the behavior
is the same as for ‘=’. The octal number describes the mode bits to be expected,
if combined with a ‘=’ the value given must match the file-modes exactly, with a
‘+’ at least the bits in the given number must be set in the file-modes, and with
a ‘=’; the bits in the number must not be set. Giving a ‘?’ instead of a octal digit
anywhere in the number ensures that the corresponding bits in the file-modes are
not checked, this is only useful in combination with ‘=’.

If the qualifier ‘£’ is followed by any other character anything up to the next matching
character (‘[’, ‘{’, and ‘<’ match ‘1’, ‘}’, and ‘>’ respectively, any other character
matches itself) is taken as a list of comma-separated sub-specs. Each sub-spec may
be either an octal number as described above or a list of any of the characters ‘u’,

[Pl (0

‘g’, ‘o’, and ‘a’; followed by a ‘=", a ‘+’; or a ‘=’ followed by a list of any of the
characters ‘r’, ‘w’, ‘x’, ‘s’, and ‘t’, or an octal digit. The first list of characters
specify which access rights are to be checked. If a ‘u’ is given, those for the owner
of the file are used, if a ‘g’ is given, those of the group are checked, a ‘o’ means
to test those of other users, and the ‘a’ says to test all three groups. The ‘=", ‘+’,
and ‘-’ again says how the modes are to be checked and have the same meaning as
described for the first form above. The second list of characters finally says which
access rights are to be expected: ‘r’ for read access, ‘w’ for write access, ‘x’ for the
right to execute the file (or to search a directory), ‘s’ for the setuid and setgid bits,

and ‘t’ for the sticky bit.

Thus, ‘*(£707)’ gives the files for which the owner has read, write, and execute
permission, and for which other group members have no rights, independent of the
permissions for other users. The pattern ‘*(£-100)’ gives all files for which the
owner does not have execute permission, and ‘*(f:gu+w,o-rx:)’ gives the files for
which the owner and the other members of the group have at least write permission,
and for which other users don’t have read or execute permission.

The string will be executed as shell code. The filename will be included in the list if
and only if the code returns a zero status (usually the status of the last command).

In the first form, the first character after the ‘e’ will be used as a separator and
anything up to the next matching separator will be taken as the string; ‘[’, ‘{’,
and ‘<’ match ‘]’, ‘}’, and >’, respectively, while any other character matches itself.
Note that expansions must be quoted in the string to prevent them from being
expanded before globbing is done. string is then executed as shell code. The string
globqual is appended to the array zsh_eval_context the duration of execution.

During the execution of string the filename currently being tested is available in the
parameter REPLY; the parameter may be altered to a string to be inserted into the
list instead of the original filename. In addition, the parameter reply may be set
to an array or a string, which overrides the value of REPLY. If set to an array, the
latter is inserted into the command line word by word.

For example, suppose a directory contains a single file ‘lonely’. Then the expression
‘x(e:’reply=(${REPLY}{1,23})’:)’ will cause the words ‘lonelyl’ and ‘lonely2’
to be inserted into the command line. Note the quoting of string.

Chapter 14: Expansion 73

ddev
1[-1+]ct

uid

gid

The form +cmd has the same effect, but no delimiters appear around cmd. In-
stead, cmd is taken as the longest sequence of characters following the + that are
alphanumeric or underscore. Typically cmd will be the name of a shell function that
contains the appropriate test. For example,

nt() { [[$REPLY -nt $NTREF]] }
NTREF=reffile
1ls -1d -- *(+nt)

lists all files in the directory that have been modified more recently than reffile.
files on the device dev

files having a link count less than ct (=), greater than ct (+), or equal to ct

files owned by the effective user ID

files owned by the effective group 1D

files owned by user ID id if that is a number. Otherwise, id specifies a user name:
the character after the ‘u’ will be taken as a separator and the string between
it and the next matching separator will be taken as a user name. The starting
separators ‘[, ‘{’, and ‘<’ match the final separators ‘1’, ‘}’, and ‘>’, respectively;
any other character matches itself. The selected files are those owned by this user.
For example, ‘u:foo:’ or ‘ulfoo]’ selects files owned by user ‘foo’.

like uid but with group IDs or names

a[Mwhms][~ | +]|n

files accessed exactly n days ago. Files accessed within the last n days are selected
using a negative value for n (-n). Files accessed more than n days ago are selected
by a positive n value (+n). Optional unit specifiers ‘M, ‘w’, ‘h’, ‘m’ or ‘s’ (e.g. ‘ahb’)
cause the check to be performed with months (of 30 days), weeks, hours, minutes
or seconds instead of days, respectively. An explicit ‘d’ for days is also allowed.

Any fractional part of the difference between the access time and the current part
in the appropriate units is ignored in the comparison. For instance, ‘echo *(ah-5)’
would echo files accessed within the last five hours, while ‘echo *(ah+5)’ would
echo files accessed at least six hours ago, as times strictly between five and six hours
are treated as five hours.

m[Mwhms|[- | +|n

like the file access qualifier, except that it uses the file modification time.

c[Mwhms][-|+]n

Li+|-]n

like the file access qualifier, except that it uses the file inode change time.

files less than n bytes (=), more than n bytes (+), or exactly n bytes in length.

If this flag is directly followed by a size specifier ‘k’ (‘K’), ‘m’ (‘M’), or ‘p’ (‘P’) (e.g.
‘Lk-50’) the check is performed with kilobytes, megabytes, or blocks (of 512 bytes)
instead. (On some systems additional specifiers are available for gigabytes, ‘g’ or
‘G’, and terabytes, ‘t” or ‘T’.) If a size specifier is used a file is regarded as "exactly"
the size if the file size rounded up to the next unit is equal to the test size. Hence
‘*(Lm1)’ matches files from 1 byte up to 1 Megabyte inclusive. Note also that the
set of files "less than" the test size only includes files that would not match the
equality test; hence ‘*(Lm-1)’ only matches files of zero size.

negates all qualifiers following it

toggles between making the qualifiers work on symbolic links (the default) and the
files they point to

Chapter 14: Expansion 74

Yn

ocC

Oc

[beg[,end]]

Pstring

sets the MARK_DIRS option for the current pattern

appends a trailing qualifier mark to the filenames, analogous to the LIST_TYPES
option, for the current pattern (overrides M)

sets the NULL_GLOB option for the current pattern
sets the GLOB_DOTS option for the current pattern
sets the NUMERIC_GLOB_SORT option for the current pattern

enables short-circuit mode: the pattern will expand to at most n filenames. If more
than n matches exist, only the first n matches in directory traversal order will be
considered.

Implies oN when no oc qualifier is used.

specifies how the names of the files should be sorted. If ¢ is n they are sorted by
name; if it is L they are sorted depending on the size (length) of the files; if 1 they
are sorted by the number of links; if a, m, or ¢ they are sorted by the time of the
last access, modification, or inode change respectively; if d, files in subdirectories
appear before those in the current directory at each level of the search — this is best
combined with other criteria, for example ‘odon’ to sort on names for files within
the same directory; if N, no sorting is performed. Note that a, m, and ¢ compare the
age against the current time, hence the first name in the list is the youngest file.
Also note that the modifiers =~ and - are used, so ‘*("-oL)’ gives a list of all files
sorted by file size in descending order, following any symbolic links. Unless oN is
used, multiple order specifiers may occur to resolve ties.

The default sorting is n (by name) unless the Y glob qualifier is used, in which case
it is N (unsorted).

oe and o+ are special cases; they are each followed by shell code, delimited as for
the e glob qualifier and the + glob qualifier respectively (see above). The code is
executed for each matched file with the parameter REPLY set to the name of the file
on entry and globsort appended to zsh_eval_context. The code should modify
the parameter REPLY in some fashion. On return, the value of the parameter is used
instead of the file name as the string on which to sort. Unlike other sort operators,
oe and o+ may be repeated, but note that the maximum number of sort operators
of any kind that may appear in any glob expression is 12.

like ‘o’, but sorts in descending order; i.e. ‘x("oc)’ is the same as ‘*(0c)’ and
‘*(~0c)’ is the same as ‘*(oc)’; ‘0d’ puts files in the current directory before those
in subdirectories at each level of the search.

specifies which of the matched filenames should be included in the returned list.
The syntax is the same as for array subscripts. beg and the optional end may be
mathematical expressions. As in parameter subscripting they may be negative to
make them count from the last match backward. E.g.: ‘*(-0L[1,3])’ gives a list of
the names of the three largest files.

The string will be prepended to each glob match as a separate word. string is
delimited in the same way as arguments to the e glob qualifier described above. The
qualifier can be repeated; the words are prepended separately so that the resulting
command line contains the words in the same order they were given in the list of
glob qualifiers.

A typical use for this is to prepend an option before all occurrences of a file name;

for example, the pattern ‘*(P:-f:)’ produces the command line arguments ‘~f filel
-f file2 ...

Chapter 15: Parameters 75

If the modifier = is active, then string will be appended instead of prepended.
Prepending and appending is done independently so both can be used on the same
glob expression; for example by writing ‘*(P:foo:"P:bar: P:baz:)’ which pro-
duces the command line arguments ‘foo baz filel bar ...’
More than one of these lists can be combined, separated by commas. The whole list matches if
at least one of the sublists matches (they are ‘or’ed, the qualifiers in the sublists are ‘and’ed).
Some qualifiers, however, affect all matches generated, independent of the sublist in which they
are given. These are the qualifiers ‘M’, ‘T’, ‘N’, ‘D’, ‘n’, ‘o’, ‘0’ and the subscripts given in brackets
(L.7).
If a “:” appears in a qualifier list, the remainder of the expression in parenthesis is interpreted as
a modifier (see Section 14.1.4 [Modifiers], page 42, in Section 14.1 [History Expansion], page 40).
Each modifier must be introduced by a separate ‘:’. Note also that the result after modification
does not have to be an existing file. The name of any existing file can be followed by a modifier
of the form ‘(:...)" even if no actual filename generation is performed, although note that the
presence of the parentheses causes the entire expression to be subjected to any global pattern
matching options such as NULL_GLOB. Thus:
1s -1d —- *(-/)
lists all directories and symbolic links that point to directories, and
ls -1d —- *(-@)
lists all broken symbolic links, and
1s -1d -- *(%W)
lists all world-writable device files in the current directory, and
1s -1d —— *(W,X)
lists all files in the current directory that are world-writable or world-executable, and
print -rCl /tmp/foo*(u0~Q@:t)
outputs the basename of all root-owned files beginning with the string ‘foo’ in /tmp, ignoring
symlinks, and
1s -1d -- *.x7(lexl|parse).[ch] ("D"11)
lists all files having a link count of one whose names contain a dot (but not those starting with a
dot, since GLOB_DOTS is explicitly switched off) except for lex.c, lex.h, parse.c and parse.h.
print -rCl b*.pro(#q:s/pro/shmo/) (#q.:s/builtin/shmiltin/)
demonstrates how colon modifiers and other qualifiers may be chained together. The ordi-
nary qualifier ‘.’ is applied first, then the colon modifiers in order from left to right. So if
EXTENDED_GLOB is set and the base pattern matches the regular file builtin.pro, the shell will
print ‘shmiltin.shmo’.

15 Parameters

15.1 Description

A parameter has a name, a value, and a number of attributes. A name may be any sequence
of alphanumeric characters and underscores, or the single characters ‘x’, ‘@, ‘#’, *?’, ‘=’ ‘§’ or
‘1’ A parameter whose name begins with an alphanumeric or underscore is also referred to as
a variable.

The attributes of a parameter determine the type of its value, often referred to as the parameter
type or variable type, and also control other processing that may be applied to the value when it

Chapter 15: Parameters 76

is referenced. The value type may be a scalar (a string, an integer, or a floating point number),
an array (indexed numerically), or an associative array (an unordered set of name-value pairs,
indexed by name, also referred to as a hash).

Named scalar parameters may have the exported, -x, attribute, to copy them into the process
environment, which is then passed from the shell to any new processes that it starts. Exported
parameters are called environment variables. The shell also imports environment variables at
startup time and automatically marks the corresponding parameters as exported. Some envi-
ronment variables are not imported for reasons of security or because they would interfere with
the correct operation of other shell features.

Parameters may also be special, that is, they have a predetermined meaning to the shell. Special
parameters cannot have their type changed or their readonly attribute turned off, and if a special
parameter is unset, then later recreated, the special properties will be retained.

To declare the type of a parameter, or to assign a string or numeric value to a scalar parameter,
use the typeset builtin.

The value of a scalar parameter may also be assigned by writing:
name=value

In scalar assignment, value is expanded as a single string, in which the elements of arrays are
joined together; filename expansion is not performed unless the option GLOB_ASSIGN is set.

When the integer attribute, -i, or a floating point attribute, -E or -F, is set for name, the value
is subject to arithmetic evaluation. Furthermore, by replacing ‘=" with ‘+=’, a parameter can
be incremented or appended to. See Section 15.2 [Array Parameters], page 76, and Chapter 11
[Arithmetic Evaluation], page 28, for additional forms of assignment.

Note that assignment may implicitly change the attributes of a parameter. For example, assign-
ing a number to a variable in arithmetic evaluation may change its type to integer or float, and
with GLOB_ASSIGN assigning a pattern to a variable may change its type to an array.

To reference the value of a parameter, write ‘$name’ or ‘${name}’. See Section 14.3 [Parameter
Expansion], page 46, for complete details. That section also explains the effect of the difference
between scalar and array assignment on parameter expansion.

15.2 Array Parameters

To assign an array value, write one of:
set -A name value ...
name=(value ...)
name=([keyl=value ...)

If no parameter name exists, an ordinary array parameter is created. If the parameter name
exists and is a scalar, it is replaced by a new array.

In the third form, key is an expression that will be evaluated in arithmetic context (in its
simplest form, an integer) that gives the index of the element to be assigned with value. In this
form any elements not explicitly mentioned that come before the largest index to which a value
is assigned are assigned an empty string. The indices may be in any order. Note that this syntax
is strict: [and]= must not be quoted, and key may not consist of the unquoted string 1=, but
is otherwise treated as a simple string. The enhanced forms of subscript expression that may
be used when directly subscripting a variable name, described in the section Array Subscripts
below, are not available.

The syntaxes with and without the explicit key may be mixed. An implicit key is deduced by
incrementing the index from the previously assigned element. Note that it is not treated as an
error if latter assignments in this form overwrite earlier assignments.

For example, assuming the option KSH_ARRAYS is not set, the following:

Chapter 15: Parameters 7

array=(one [3]=three four)

causes the array variable array to contain four elements one, an empty string, three and four,
in that order.

In the forms where only value is specified, full command line expansion is performed.

In the [keyl=value form, both key and value undergo all forms of expansion allowed for single
word shell expansions (this does not include filename generation); these are as performed by
the parameter expansion flag (e) as described in Section 14.3 [Parameter Expansion], page 46.
Nested parentheses may surround value and are included as part of the value, which is joined
into a plain string; this differs from ksh which allows the values themselves to be arrays. A
future version of zsh may support that. To cause the brackets to be interpreted as a character
class for filename generation, and therefore to treat the resulting list of files as a set of values,
quote the equal sign using any form of quoting. Example:

name=([a-z]’="%)

To append to an array without changing the existing values, use one of the following:
name+=(value ...)
name+=([key]l=value ...)

In the second form key may specify an existing index as well as an index off the end of the old
array; any existing value is overwritten by value. Also, it is possible to use [key]+=value to
append to the existing value at that index.

Within the parentheses on the right hand side of either form of the assignment, newlines and
semicolons are treated the same as white space, separating individual values. Any consecutive
sequence of such characters has the same effect.

Ordinary array parameters may also be explicitly declared with:
typeset -a name

Associative arrays must be declared before assignment, by using:
typeset -A name

When name refers to an associative array, the list in an assignment is interpreted as alternating
keys and values:

set -A name key value ...
name=(key value ...)
name=([keyl=value ...)

Note that only one of the two syntaxes above may be used in any given assignment; the forms
may not be mixed. This is unlike the case of numerically indexed arrays.

Every key must have a value in this case. Note that this assigns to the entire array, deleting any
elements that do not appear in the list. The append syntax may also be used with an associative
array:

name+=(key value ...)
name+=([key]=value ...)

This adds a new key/value pair if the key is not already present, and replaces the value for the
existing key if it is. In the second form it is also possible to use [key]+=value to append to the
existing value at that key. Expansion is performed identically to the corresponding forms for
normal arrays, as described above.

To create an empty array (including associative arrays), use one of:
set -A name

name=()

Chapter 15: Parameters 78

15.2.1 Array Subscripts

Individual elements of an array may be selected using a subscript. A subscript of the form ‘ [exp]’
selects the single element exp, where exp is an arithmetic expression which will be subject
to arithmetic expansion as if it were surrounded by ‘$((...))’. The elements are numbered
beginning with 1, unless the KSH_ARRAYS option is set in which case they are numbered from
ZETO.

Subscripts may be used inside braces used to delimit a parameter name, thus ‘${foo[2]} is
equivalent to ‘$foo[2]’. If the KSH_ARRAYS option is set, the braced form is the only one that
works, as bracketed expressions otherwise are not treated as subscripts.

If the KSH_ARRAYS option is not set, then by default accesses to an array element with a subscript
that evaluates to zero return an empty string, while an attempt to write such an element is
treated as an error. For backward compatibility the KSH_ZERO_SUBSCRIPT option can be set to
cause subscript values 0 and 1 to be equivalent; see the description of the option in Section 16.2
[Description of Options|, page 98.
The same subscripting syntax is used for associative arrays, except that no arithmetic expansion
is applied to exp. However, the parsing rules for arithmetic expressions still apply, which affects
the way that certain special characters must be protected from interpretation. See Subscript
Parsing below for details.
A subscript of the form ‘[*]’ or ‘[@]’ evaluates to all elements of an array; there is no difference
between the two except when they appear within double quotes. ‘"$foo[*]"’ evaluates to
‘"$foo[1] $fool[2] ..."’, whereas ‘"$foo[@]"’ evaluates to ‘"$foo[1]" "$foo[2]" ...”. For
associative arrays, ‘[*]’ or ‘[@]’ evaluate to all the values, in no particular order. Note that
this does not substitute the keys; see the documentation for the ‘k’ flag under Section 14.3
[Parameter Expansion], page 46, for complete details. When an array parameter is referenced
as ‘$name’ (with no subscript) it evaluates to ‘$name[*]’, unless the KSH_ARRAYS option is set
in which case it evaluates to ‘${name[0]}’ (for an associative array, this means the value of the
key ‘0’, which may not exist even if there are values for other keys).
A subscript of the form ‘[expl,exp2]’ selects all elements in the range expl to exp2, inclusive.
(Associative arrays are unordered, and so do not support ranges.) If one of the subscripts
evaluates to a negative number, say —-n, then the nth element from the end of the array is used.
Thus ‘$foo[-3]’ is the third element from the end of the array foo, and ‘$foo[1,-1]1’ is the
same as ‘$foo[*]’.
Subscripting may also be performed on non-array values, in which case the subscripts specify a
substring to be extracted. For example, if FOO is set to ‘foobar’, then ‘echo $F00[2,5]’ prints
‘ooba’. Note that some forms of subscripting described below perform pattern matching, and in
that case the substring extends from the start of the match of the first subscript to the end of
the match of the second subscript. For example,

string="abcdefghijklm"

print ${stringl[(r)d?, (r)h7]}
prints ‘defghi’. This is an obvious generalisation of the rule for single-character matches. For
a single subscript, only a single character is referenced (not the range of characters covered by
the match).
Note that in substring operations the second subscript is handled differently by the r and R
subscript flags: the former takes the shortest match as the length and the latter the longest
match. Hence in the former case a * at the end is redundant while in the latter case it matches
the whole remainder of the string. This does not affect the result of the single subscript case as
here the length of the match is irrelevant.

15.2.2 Array Element Assignment

A subscript may be used on the left side of an assignment like so:

Chapter 15: Parameters 79

name [exp] =value

In this form of assignment the element or range specified by exp is replaced by the expression
on the right side. An array (but not an associative array) may be created by assignment to a
range or element. Arrays do not nest, so assigning a parenthesized list of values to an element or
range changes the number of elements in the array, shifting the other elements to accommodate
the new values. (This is not supported for associative arrays.)

This syntax also works as an argument to the typeset command:
typeset "name [exp] "=value

The value may not be a parenthesized list in this case; only single-element assignments may be
made with typeset. Note that quotes are necessary in this case to prevent the brackets from
being interpreted as filename generation operators. The noglob precommand modifier could be
used instead.

To delete an element of an ordinary array, assign ‘()’ to that element. To delete an element of
an associative array, use the unset command:

unset "name [exp]"

15.2.3 Subscript Flags

If the opening bracket, or the comma in a range, in any subscript expression is directly followed
by an opening parenthesis, the string up to the matching closing one is considered to be a list
of flags, as in ‘name [(flags) exp]’.

The flags s, n and b take an argument; the delimiter is shown below as ‘:’, but any character, or
the matching pairs ‘(...)7, *{...}’, ‘[...]’, or ‘<...>’, may be used, but note that ‘<...>” can only be
used if the subscript is inside a double quoted expression or a parameter substitution enclosed
in braces as otherwise the expression is interpreted as a redirection.

The flags currently understood are:

W If the parameter subscripted is a scalar then this flag makes subscripting work
on words instead of characters. The default word separator is whitespace. When
combined with the i or I flag, the effect is to produce the index of the first character
of the first/last word which matches the given pattern; note that a failed match in
this case always yields 0.

s:string: This gives the string that separates words (for use with the w flag). The delimiter
character : is arbitrary; see above.

P Recognize the same escape sequences as the print builtin in the string argument of
a subsequent ‘s’ flag.

f If the parameter subscripted is a scalar then this flag makes subscripting work on
lines instead of characters, i.e. with elements separated by newlines. This is a
shorthand for ‘pws:\n:’.

r Reverse subscripting: if this flag is given, the exp is taken as a pattern and the
result is the first matching array element, substring or word (if the parameter is an
array, if it is a scalar, or if it is a scalar and the ‘w’” flag is given, respectively). The
subscript used is the number of the matching element, so that pairs of subscripts
such as ‘$foo[(r)?7,3] and ‘$foo[(xr) 7?7, (r)f*]’ are possible if the parameter is
not an associative array. If the parameter is an associative array, only the value
part of each pair is compared to the pattern, and the result is that value.

If a search through an ordinary array failed, the search sets the subscript to one past
the end of the array, and hence ${array[(r)pattern]} will substitute the empty
string. Thus the success of a search can be tested by using the (i) flag, for example
(assuming the option KSH_ARRAYS is not in effect):

Chapter 15: Parameters 80

[[${array[(i)pattern]} -le ${#array} 1]
If KSH_ARRAYS is in effect, the -1e should be replaced by -1t.

R Like ‘r’, but gives the last match. For associative arrays, gives all possible matches.
May be used for assigning to ordinary array elements, but not for assigning to
associative arrays. On failure, for normal arrays this has the effect of returning
the element corresponding to subscript 0; this is empty unless one of the options
KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in effect.

Note that in subscripts with both ‘r’ and ‘R’ pattern characters are active even
if they were substituted for a parameter (regardless of the setting of GLOB_SUBST
which controls this feature in normal pattern matching). The flag ‘e’ can be added
to inhibit pattern matching. As this flag does not inhibit other forms of substitution,
care is still required; using a parameter to hold the key has the desired effect:

key2=’original key’
print ${array[(Re)$key2]}

i Like ‘r’, but gives the index of the match instead; this may not be combined with a
second argument. On the left side of an assignment, behaves like ‘r’. For associative
arrays, the key part of each pair is compared to the pattern, and the first matching
key found is the result. On failure substitutes the length of the array plus one, as
discussed under the description of ‘r’, or the empty string for an associative array.

I Like ‘i’, but gives the index of the last match, or all possible matching keys in an
associative array. On failure substitutes 0, or the empty string for an associative
array. This flag is best when testing for values or keys that do not exist.

k If used in a subscript on an associative array, this flag causes the keys to be in-
terpreted as patterns, and returns the value for the first key found where exp is
matched by the key. Note this could be any such key as no ordering of associative
arrays is defined. This flag does not work on the left side of an assignment to an
associative array element. If used on another type of parameter, this behaves like
‘r’.

K On an associative array this is like ‘k’ but returns all values where exp is matched
by the keys. On other types of parameters this has the same effect as ‘R’.

n:expr: If combined with ‘r’, ‘R, ‘i’ or ‘I’, makes them give the nth or nth last match
(if expr evaluates to n). This flag is ignored when the array is associative. The
delimiter character : is arbitrary; see above.

b:expr: If combined with ‘r’, ‘R’, ‘i’ or ‘I’, makes them begin at the nth or nth last element,
word, or character (if expr evaluates to n). This flag is ignored when the array is
associative. The delimiter character : is arbitrary; see above.

e This flag causes any pattern matching that would be performed on the subscript to
use plain string matching instead. Hence ‘${array[(re)*]}’ matches only the array
element whose value is *. Note that other forms of substitution such as parameter
substitution are not inhibited.

This flag can also be used to force * or @ to be interpreted as a single key rather
than as a reference to all values. It may be used for either purpose on the left side
of an assignment.

See Parameter Expansion Flags (Section 14.3 [Parameter Expansion|, page 46) for additional
ways to manipulate the results of array subscripting.

Chapter 15: Parameters 81

15.2.4 Subscript Parsing

This discussion applies mainly to associative array key strings and to patterns used for reverse
[

subscripting (the ‘r’, ‘R’, ‘i’, etc. flags), but it may also affect parameter substitutions that
appear as part of an arithmetic expression in an ordinary subscript.

To avoid subscript parsing limitations in assignments to associative array elements, use the
append syntax:

aa+=(’key with "xstrange*" characters’ ’value string’)

The basic rule to remember when writing a subscript expression is that all text between the
opening ‘[’ and the closing ‘1’ is interpreted as if it were in double quotes (Section 6.9 [Quoting],
page 17). However, unlike double quotes which normally cannot nest, subscript expressions may
appear inside double-quoted strings or inside other subscript expressions (or both!), so the rules
have two important differences.

The first difference is that brackets (‘[’ and ‘]’) must appear as balanced pairs in a subscript
expression unless they are preceded by a backslash (‘\’). Therefore, within a subscript expression
(and unlike true double-quoting) the sequence ‘\ [’ becomes ‘[’, and similarly ‘\]’ becomes ‘]’.
This applies even in cases where a backslash is not normally required; for example, the pattern
‘[~ [1” (to match any character other than an open bracket) should be written ‘[*\[]” in a
reverse-subscript pattern. However, note that ‘\["\[\]” and even ‘\[" []’ mean the same thing,
because backslashes are always stripped when they appear before brackets!

The same rule applies to parentheses (‘C’ and ‘)’) and braces (‘{’ and ‘}’): they must appear
either in balanced pairs or preceded by a backslash, and backslashes that protect parentheses or
braces are removed during parsing. This is because parameter expansions may be surrounded
by balanced braces, and subscript flags are introduced by balanced parentheses.

The second difference is that a double-quote (‘"’) may appear as part of a subscript expression
without being preceded by a backslash, and therefore that the two characters ‘\"’ remain as
two characters in the subscript (in true double-quoting, ‘\"’ becomes ‘"’). However, because of
the standard shell quoting rules, any double-quotes that appear must occur in balanced pairs
unless preceded by a backslash. This makes it more difficult to write a subscript expression that
contains an odd number of double-quote characters, but the reason for this difference is so that
when a subscript expression appears inside true double-quotes, one can still write ‘\"’ (rather
than \\\"’) for ‘.

To use an odd number of double quotes as a key in an assignment, use the typeset builtin and
an enclosing pair of double quotes; to refer to the value of that key, again use double quotes:

typeset -A aa
typeset "aalone\"two\"three\"quotes]"=QQQ
print "$aalone\"two\"three\"quotes]"

It is important to note that the quoting rules do not change when a parameter expansion with
a subscript is nested inside another subscript expression. That is, it is not necessary to use
additional backslashes within the inner subscript expression; they are removed only once, from
the innermost subscript outwards. Parameters are also expanded from the innermost subscript
first, as each expansion is encountered left to right in the outer expression.

A further complication arises from a way in which subscript parsing is not different from double
quote parsing. As in true double-quoting, the sequences ‘*’, and ‘\@ remain as two characters
when they appear in a subscript expression. To use a literal ‘*’ or ‘@’ as an associative array
key, the ‘e’ flag must be used:

typeset -A aa
aal[(e)*]=star
print $aal(e)*]

Chapter 15: Parameters 82

A last detail must be considered when reverse subscripting is performed. Parameters appearing
in the subscript expression are first expanded and then the complete expression is interpreted
as a pattern. This has two effects: first, parameters behave as if GLOB_SUBST were on (and it
cannot be turned off); second, backslashes are interpreted twice, once when parsing the array
subscript and again when parsing the pattern. In a reverse subscript, it’s necessary to use four
backslashes to cause a single backslash to match literally in the pattern. For complex patterns,
it is often easiest to assign the desired pattern to a parameter and then refer to that parameter
in the subscript, because then the backslashes, brackets, parentheses, etc., are seen only when
the complete expression is converted to a pattern. To match the value of a parameter literally
in a reverse subscript, rather than as a pattern, use ‘${(q)name}’ (Section 14.3 [Parameter
Expansion]|, page 46) to quote the expanded value.

Note that the ‘k’ and ‘K’ flags are reverse subscripting for an ordinary array, but are not reverse
subscripting for an associative array! (For an associative array, the keys in the array itself are
interpreted as patterns by those flags; the subscript is a plain string in that case.)

One final note, not directly related to subscripting: the numeric names of positional parameters
(Section 15.3 [Positional Parameters|, page 82) are parsed specially, so for example ‘$2foo’
is equivalent to ‘${2}foo’. Therefore, to use subscript syntax to extract a substring from a
positional parameter, the expansion must be surrounded by braces; for example, ‘${2[3,5]1}’
evaluates to the third through fifth characters of the second positional parameter, but ‘$2[3,5]’
is the entire second parameter concatenated with the filename generation pattern ‘[3,5]°.

15.3 Positional Parameters

The positional parameters provide access to the command-line arguments of a shell function,
shell script, or the shell itself; see Chapter 4 [Invocation], page 5, and also Chapter 9 [Functions],
page 22. The parameter n, where n is a number, is the nth positional parameter. The parameter
‘$0’ is a special case, see Section 15.5 [Parameters Set By The Shell], page 83.

The parameters *, @ and argv are arrays containing all the positional parameters; thus
‘$argv[n]l’, etc., is equivalent to simply ‘$n’. Note that the options KSH_ARRAYS or
KSH_ZERO_SUBSCRIPT apply to these arrays as well, so with either of those options set,
‘${argv[0]}’ is equivalent to ‘$1’ and so on.

Positional parameters may be changed after the shell or function starts by using the set builtin,
by assigning to the argv array, or by direct assignment of the form ‘n=value’ where n is the
number of the positional parameter to be changed. This also creates (with empty values) any
of the positions from 1 to n that do not already have values. Note that, because the positional
parameters form an array, an array assignment of the form ‘n=(value ...)’ is allowed, and has
the effect of shifting all the values at positions greater than n by as many positions as necessary
to accommodate the new values.

15.4 Local Parameters

Shell function executions delimit scopes for shell parameters. (Parameters are dynamically
scoped.) The typeset builtin, and its alternative forms declare, integer, local and readonly
(but not export), can be used to declare a parameter as being local to the innermost scope.

When a parameter is read or assigned to, the innermost existing parameter of that name is
used. (That is, the local parameter hides any less-local parameter.) However, assigning to a
non-existent parameter, or declaring a new parameter with export, causes it to be created in
the outermost scope.

Local parameters disappear when their scope ends. unset can be used to delete a parameter
while it is still in scope; any outer parameter of the same name remains hidden.

Chapter 15: Parameters 83

Special parameters may also be made local; they retain their special attributes unless either the
existing or the newly-created parameter has the -h (hide) attribute. This may have unexpected
effects: there is no default value, so if there is no assignment at the point the variable is made
local, it will be set to an empty value (or zero in the case of integers). The following:

typeset PATH=/new/directory:$PATH

is valid for temporarily allowing the shell or programmes called from it to find the programs in
/new/directory inside a function.

Note that the restriction in older versions of zsh that local parameters were never exported has
been removed.

15.5 Parameters Set By The Shell

In the parameter lists that follow, the mark ‘<S>’ indicates that the parameter is special. ‘<Z>’
indicates that the parameter does not exist when the shell initializes in sh or ksh emulation
mode.

The following parameters are automatically set by the shell:

I <S> The process ID of the last command started in the background with &, put into the
background with the bg builtin, or spawned with coproc.

<S> The number of positional parameters in decimal. Note that some confusion may
occur with the syntax $#param which substitutes the length of param. Use ${#} to
resolve ambiguities. In particular, the sequence ‘$#-..." in an arithmetic expression

is interpreted as the length of the parameter -, q.v.

ARGC <S> <Z>
Same as #.

$ <S> The process ID of this shell. Note that this indicates the original shell started by
invoking zsh; all processes forked from the shells without executing a new program,
such as subshells started by (...), substitute the same value.

- <S> Flags supplied to the shell on invocation or by the set or setopt commands.
* <S> An array containing the positional parameters.

argv <S> <Z>
Same as *. Assigning to argv changes the local positional parameters, but argv is
not itself a local parameter. Deleting argv with unset in any function deletes it
everywhere, although only the innermost positional parameter array is deleted (so
* and @ in other scopes are not affected).

Q@ <S> Same as argv[@], even when argv is not set.
? <S> The exit status returned by the last command.
0 <S> The name used to invoke the current shell, or as set by the —c¢ command line option

upon invocation. If the FUNCTION_ARGZERO option is set, $0 is set upon entry to a
shell function to the name of the function, and upon entry to a sourced script to
the name of the script, and reset to its previous value when the function or script
returns.

status <S> <7Z>
Same as 7.

pipestatus <S> <Z>
An array containing the exit statuses returned by all commands in the last pipeline.

Chapter 15: Parameters 84

_ <S> The last argument of the previous command. Also, this parameter is set in the
environment of every command executed to the full pathname of the command.

CPUTYPE The machine type (microprocessor class or machine model), as determined at run
time.

EGID <S> The effective group ID of the shell process. If you have sufficient privileges, you may
change the effective group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective group ID by ‘(EGID=gid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

EUID <S> The effective user ID of the shell process. If you have sufficient privileges, you may
change the effective user ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective user ID by ‘(EUID=uid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

ERRNO <S> The value of errno (see man page errno(3)) as set by the most recently failed system
call. This value is system dependent and is intended for debugging purposes. It is
also useful with the zsh/system module which allows the number to be turned into
a name or message.

FUNCNEST <S>
Integer. If greater than or equal to zero, the maximum nesting depth of shell
functions. When it is exceeded, an error is raised at the point where a function is
called. The default value is determined when the shell is configured, but is typically
500. Increasing the value increases the danger of a runaway function recursion
causing the shell to crash. Setting a negative value turns off the check.

GID <S> The real group ID of the shell process. If you have sufficient privileges, you may
change the group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command under a different
group ID by ‘(GID=gid; command)’
If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

HISTCMD The current history event number in an interactive shell, in other words the event
number for the command that caused $HISTCMD to be read. If the current history
event modifies the history, HISTCMD changes to the new maximum history event
number.

HOST The current hostname.

LINENO <S>
The line number of the current line within the current script, sourced file, or shell
function being executed, whichever was started most recently. Note that in the case
of shell functions the line number refers to the function as it appeared in the original
definition, not necessarily as displayed by the functions builtin.

LOGNAME If the corresponding variable is not set in the environment of the shell, it is initialized
to the login name corresponding to the current login session. This parameter is
exported by default but this can be disabled using the typeset builtin. The value
is set to the string returned by the man page getlogin(3) system call if that is
available.

MACHTYPE The machine type (microprocessor class or machine model), as determined at com-
pile time.

Chapter 15:

OLDPWD

OPTARG <S>

OPTIND <S>

OSTYPE
PPID <S>

PWD

RANDOM <S>

Parameters 85

The previous working directory. This is set when the shell initializes and whenever
the directory changes.

The value of the last option argument processed by the getopts command.

The index of the last option argument processed by the getopts command.
The operating system, as determined at compile time.

The process ID of the parent of the shell. As for $$, the value indicates the parent
of the original shell and does not change in subshells.

The present working directory. This is set when the shell initializes and whenever
the directory changes.

A pseudo-random integer from 0 to 32767, newly generated each time this parameter
is referenced. The random number generator can be seeded by assigning a numeric
value to RANDOM.

The values of RANDOM form an intentionally-repeatable pseudo-random sequence;
subshells that reference RANDOM will result in identical pseudo-random values unless
the value of RANDOM is referenced or seeded in the parent shell in between subshell
invocations.

SECONDS <S>

SHLVL <S>

signals

TRY_BLOCK_

TRY_BLOCK_

The number of seconds since shell invocation. If this parameter is assigned a value,
then the value returned upon reference will be the value that was assigned plus the
number of seconds since the assignment.

Unlike other special parameters, the type of the SECONDS parameter can be changed
using the typeset command. Only integer and one of the floating point types are
allowed. For example, ‘typeset -F SECONDS’ causes the value to be reported as
a floating point number. The value is available to microsecond accuracy, although
the shell may show more or fewer digits depending on the use of typeset. See the
documentation for the builtin typeset in Chapter 17 [Shell Builtin Commands],
page 123, for more details.

Incremented by one each time a new shell is started.

An array containing the names of the signals. Note that with the standard zsh
numbering of array indices, where the first element has index 1, the signals are
offset by 1 from the signal number used by the operating system. For example, on
typical Unix-like systems HUP is signal number 1, but is referred to as $signals[2].
This is because of EXIT at position 1 in the array, which is used internally by zsh
but is not known to the operating system.

ERROR <S>

In an always block, indicates whether the preceding list of code caused an error.
The value is 1 to indicate an error, 0 otherwise. It may be reset, clearing the error
condition. See Section 6.3 [Complex Commands|, page 11,

INTERRUPT <S>

This variable works in a similar way to TRY_BLOCK_ERROR, but represents the status
of an interrupt from the signal SIGINT, which typically comes from the keyboard
when the user types ~C. If set to 0, any such interrupt will be reset; otherwise, the
interrupt is propagated after the always block.

Chapter 15: Parameters 86

TTY

Note that it is possible that an interrupt arrives during the execution of the always
block; this interrupt is also propagated.

The name of the tty associated with the shell, if any.

TTYIDLE <S>

UID <S>

The idle time of the tty associated with the shell in seconds or -1 if there is no such
tty.

The real user ID of the shell process. If you have sufficient privileges, you may
change the user ID of the shell by assigning to this parameter. Also (assuming
sufficient privileges), you may start a single command under a different user ID by
‘(UID=uid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

USERNAME <S>

VENDOR

The username corresponding to the real user ID of the shell process. If you have
sufficient privileges, you may change the username (and also the user ID and group
ID) of the shell by assigning to this parameter. Also (assuming sufficient privileges),
you may start a single command under a different username (and user ID and group
ID) by ‘(USERNAME=username; command)’

The vendor, as determined at compile time.

zsh_eval_context <S> <Z> (ZSH_EVAL_CONTEXT <S>)

An array (colon-separated list) indicating the context of shell code that is being run.
Each time a piece of shell code that is stored within the shell is executed a string
is temporarily appended to the array to indicate the type of operation that is being
performed. Read in order the array gives an indication of the stack of operations
being performed with the most immediate context last.

Note that the variable does not give information on syntactic context such as
pipelines or subshells. Use $ZSH_SUBSHELL to detect subshells.

The context is one of the following:
cmdarg Code specified by the —c option to the command line that invoked the
shell.

[4 [4

cmdsubst Command substitution using the or $(...) construct.

equalsubst
File substitution using the =(...) construct.

eval Code executed by the eval builtin.

evalautofunc
Code executed with the KSH_AUTOLOAD mechanism in order to define an
autoloaded function.

fc Code from the shell history executed by the —e option to the fc builtin.
file Lines of code being read directly from a file, for example by the source
builtin.

filecode Lines of code being read from a .zwc file instead of directly from the
source file.

globqual Code executed by the e or + glob qualifier.
globsort Code executed to order files by the o glob qualifier.

insubst File substitution using the <(...) construct.

Chapter 15: Parameters 87

loadautofunc
Code read directly from a file to define an autoloaded function.

outsubst File substitution using the >(...) construct.

sched Code executed by the sched builtin.
shfunc A shell function.
stty Code passed to stty by the STTY environment variable. Normally this is

passed directly to the system’s stty command, so this value is unlikely
to be seen in practice.

style Code executed as part of a style retrieved by the zstyle builtin from
the zsh/zutil module.

toplevel The highest execution level of a script or interactive shell.

trap Code executed as a trap defined by the trap builtin. Traps defined as
functions have the context shfunc. As traps are asynchronous they may
have a different hierarchy from other code.

zpty Code executed by the zpty builtin from the zsh/zpty module.

zregexparse—-guard
Code executed as a guard by the zregexparse command from the
zsh/zutil module.

zregexparse-action
Code executed as an action by the zregexparse command from the
zsh/zutil module.

ZSH_ARGZERO
If zsh was invoked to run a script, this is the name of the script. Otherwise, it is
the name used to invoke the current shell. This is the same as the value of $0 when
the POSIX_ARGZERO option is set, but is always available.

ZSH_EXECUTION_STRING
If the shell was started with the option -c, this contains the argument passed to the
option. Otherwise it is not set.

ZSH_NAME Expands to the basename of the command used to invoke this instance of zsh.

ZSH_PATCHLEVEL
The output of ‘git describe --tags --long’ for the zsh repository used to build
the shell. This is most useful in order to keep track of versions of the shell during
development between releases; hence most users should not use it and should instead
rely on $ZSH_VERSION.

zsh_scheduled_events
See Section 22.24 [The zsh/sched Module], page 317.

ZSH_SCRIPT
If zsh was invoked to run a script, this is the name of the script, otherwise it is
unset.

ZSH_SUBSHELL
Readonly integer. Initially zero, incremented each time the shell forks to create a
subshell for executing code. Hence ‘(print $ZSH_SUBSHELL)’ and ‘print $(print
$ZSH_SUBSHELL)’ output 1, while ‘((print $ZSH_SUBSHELL))’ outputs 2.

ZSH_VERSION
The version number of the release of zsh.

Chapter 15: Parameters 88

15.6 Parameters Used By The Shell

The following parameters are used by the shell. Again, ‘<S>’ indicates that the parameter is
special and ‘<Z>’ indicates that the parameter does not exist when the shell initializes in sh or
ksh emulation mode.

In cases where there are two parameters with an upper- and lowercase form of the same name,
such as path and PATH, the lowercase form is an array and the uppercase form is a scalar with the
elements of the array joined together by colons. These are similar to tied parameters created via
‘typeset -T’. The normal use for the colon-separated form is for exporting to the environment,
while the array form is easier to manipulate within the shell. Note that unsetting either of the
pair will unset the other; they retain their special properties when recreated, and recreating one
of the pair will recreate the other.

ARGVO If exported, its value is used as the argv[0] of external commands. Usually used
in constructs like ‘ARGVO=emacs nethack’.

BAUD The rate in bits per second at which data reaches the terminal. The line editor
will use this value in order to compensate for a slow terminal by delaying updates
to the display until necessary. If the parameter is unset or the value is zero the
compensation mechanism is turned off. The parameter is not set by default.

This parameter may be profitably set in some circumstances, e.g. for slow modems
dialing into a communications server, or on a slow wide area network. It should be
set to the baud rate of the slowest part of the link for best performance.

cdpath <S> <Z> (CDPATH <S>)
An array (colon-separated list) of directories specifying the search path for the cd
command.

COLUMNS <S>
The number of columns for this terminal session. Used for printing select lists and
for the line editor.

CORRECT_IGNORE
If set, is treated as a pattern during spelling correction. Any potential correction
that matches the pattern is ignored. For example, if the value is ‘_*’ then completion
functions (which, by convention, have names beginning with ‘_’) will never be offered
as spelling corrections. The pattern does not apply to the correction of file names, as
applied by the CORRECT_ALL option (so with the example just given files beginning
with ‘_” in the current directory would still be completed).

CORRECT_IGNORE_FILE
If set, is treated as a pattern during spelling correction of file names. Any file name
that matches the pattern is never offered as a correction. For example, if the value
is ‘. *’ then dot file names will never be offered as spelling corrections. This is useful
with the CORRECT_ALL option.

DIRSTACKSIZE
The maximum size of the directory stack, by default there is no limit. If the stack
gets larger than this, it will be truncated automatically. This is useful with the
AUTO_PUSHD option.

ENV If the ENV environment variable is set when zsh is invoked as sh or ksh, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expan-
sion, command substitution, and arithmetic expansion before being interpreted as
a pathname. Note that ENV is not used unless the shell is interactive and zsh is
emulating sh or ksh.

Chapter 15: Parameters 89

FCEDIT The default editor for the fc builtin. If FCEDIT is not set, the parameter EDITOR is
used; if that is not set either, a builtin default, usually vi, is used.

fignore <S> <Z> (FIGNORE <S>)
An array (colon separated list) containing the suffixes of files to be ignored during
filename completion. However, if completion only generates files with suffixes in this
list, then these files are completed anyway.

fpath <S> <Z> (FPATH <S>)
An array (colon separated list) of directories specifying the search path for function
definitions. This path is searched when a function with the —u attribute is referenced.
If an executable file is found, then it is read and executed in the current environment.

histchars <S>
Three characters used by the shell’s history and lexical analysis mechanism. The
first character signals the start of a history expansion (default ‘!’). The second
character signals the start of a quick history substitution (default ‘~’). The third
character is the comment character (default ‘#’).

The characters must be in the ASCII character set; any attempt to set histchars to
characters with a locale-dependent meaning will be rejected with an error message.

HISTCHARS <S> <Z>
Same as histchars. (Deprecated.)

HISTFILE The file to save the history in when an interactive shell exits. If unset, the history
is not saved.

HISTORY_IGNORE
If set, is treated as a pattern at the time history files are written. Any potential
history entry that matches the pattern is skipped. For example, if the value is ‘fc
*’ then commands that invoke the interactive history editor are never written to the
history file.

Note that HISTORY_IGNORE defines a single pattern: to specify alternatives use the
‘(first | second| ...)" syntax.

Compare the HIST_NO_STORE option or the zshaddhistory hook, either of which
would prevent such commands from being added to the interactive history at all. If
you wish to use HISTORY_IGNORE to stop history being added in the first place, you
can define the following hook:

zshaddhistory() {
emulate -L zsh
uncomment if HISTORY_IGNORE
should use EXTENDED_GLOB syntax
setopt extendedglob
[[$1 '= ${"HISTORY_IGNORE} 1]

HISTSIZE <S>
The maximum number of events stored in the internal history list. If you use the
HIST_EXPIRE_DUPS_FIRST option, setting this value larger than the SAVEHIST size
will give you the difference as a cushion for saving duplicated history events.

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.
HOME <S> The default argument for the cd command. This is not set automatically by the

shell in sh, ksh or csh emulation, but it is typically present in the environment
anyway, and if it becomes set it has its usual special behaviour.

Chapter 15: Parameters 90

IFS <S> Internal field separators (by default space, tab, newline and NUL), that are used to
separate words which result from command or parameter expansion and words read
by the read builtin. Any characters from the set space, tab and newline that appear
in the IF'S are called IF'S white space. One or more IFS white space characters or one
non-IF'S white space character together with any adjacent IFS white space character
delimit a field. If an IFS white space character appears twice consecutively in the
IFS, this character is treated as if it were not an IFS white space character.

If the parameter is unset, the default is used. Note this has a different effect from
setting the parameter to an empty string.

KEYBOARD_HACK
This variable defines a character to be removed from the end of the command line
before interpreting it (interactive shells only). It is intended to fix the problem
with keys placed annoyingly close to return and replaces the SUNKEYBOARDHACK
option which did this for backquotes only. Should the chosen character be one of
singlequote, doublequote or backquote, there must also be an odd number of them
on the command line for the last one to be removed.

For backward compatibility, if the SUNKEYBOARDHACK option is explicitly set, the
value of KEYBOARD_HACK reverts to backquote. If the option is explicitly unset, this
variable is set to empty.

KEYTIMEOUT
The time the shell waits, in hundredths of seconds, for another key to be pressed
when reading bound multi-character sequences.

LANG <S> This variable determines the locale category for any category not specifically selected
via a variable starting with ‘LC_’.

LC_ALL <S>
This variable overrides the value of the ‘LANG’ variable and the value of any of the
other variables starting with ‘LC_".

LC_COLLATE <S>
This variable determines the locale category for character collation information
within ranges in glob brackets and for sorting.

LC_CTYPE <S>
This variable determines the locale category for character handling functions. If the
MULTIBYTE option is in effect this variable or LANG should contain a value that reflects
the character set in use, even if it is a single-byte character set, unless only the 7-bit
subset (ASCII) is used. For example, if the character set is ISO-8859-1, a suitable
value might be en_US.1is088591 (certain Linux distributions) or en_US.IS08859-1
(MacOS).

LC_MESSAGES <S>
This variable determines the language in which messages should be written. Note
that zsh does not use message catalogs.

LC_NUMERIC <S>
This variable affects the decimal point character and thousands separator character
for the formatted input/output functions and string conversion functions. Note that
zsh ignores this setting when parsing floating point mathematical expressions.

LC_TIME <S>
This variable determines the locale category for date and time formatting in prompt
escape sequences.

Chapter 15: Parameters 91

LINES <S> The number of lines for this terminal session. Used for printing select lists and for
the line editor.

LISTMAX In the line editor, the number of matches to list without asking first. If the value
is negative, the list will be shown if it spans at most as many lines as given by the
absolute value. If set to zero, the shell asks only if the top of the listing would scroll
off the screen.

LOGCHECK The interval in seconds between checks for login/logout activity using the watch
parameter.

MATL If this parameter is set and mailpath is not set, the shell looks for mail in the
specified file.

MAILCHECK
The interval in seconds between checks for new mail.

mailpath <S> <Z> (MAILPATH <S>)
An array (colon-separated list) of filenames to check for new mail. Each filename
can be followed by a ‘?’ and a message that will be printed. The message will
undergo parameter expansion, command substitution and arithmetic expansion with
the variable $_ defined as the name of the file that has changed. The default message
is ‘You have new mail’. If an element is a directory instead of a file the shell will
recursively check every file in every subdirectory of the element.

manpath <S> <Z> (MANPATH <S> <Z>)
An array (colon-separated list) whose value is not used by the shell. The manpath
array can be useful, however, since setting it also sets MANPATH, and vice versa.

match

mbegin

mend Arrays set by the shell when the b globbing flag is used in pattern matches. See the
subsection Globbing flags in Section 14.8 [Filename Generation|, page 64.

MATCH

MBEGIN

MEND Set by the shell when the m globbing flag is used in pattern matches. See the

subsection Globbing flags in Section 14.8 [Filename Generation|, page 64.

module_path <S> <Z> (MODULE_PATH <S>)
An array (colon-separated list) of directories that zmodload searches for dynam-
ically loadable modules. This is initialized to a standard pathname, usually
‘/usr/local/lib/zsh/$ZSH_VERSION’. (The ‘/usr/local/lib’ part varies from
installation to installation.) For security reasons, any value set in the environment
when the shell is started will be ignored.

These parameters only exist if the installation supports dynamic module loading.

NULLCMD <S>
The command name to assume if a redirection is specified with no command. De-
faults to cat. For sh/ksh behavior, change this to :. For csh-like behavior, unset
this parameter; the shell will print an error message if null commands are entered.

path <S> <Z> (PATH <S>)
An array (colon-separated list) of directories to search for commands. When this
parameter is set, each directory is scanned and all files found are put in a hash table.

POSTEDIT <S>
This string is output whenever the line editor exits. It usually contains termcap
strings to reset the terminal.

Chapter 15: Parameters 92

PROMPT <S> <Z>

PROMPT2 <S> <Z>
PROMPT3 <S> <7Z>
PROMPT4 <S> <Z>

Same as PS1, PS2, PS3 and PS4, respectively.

prompt <S> <Z>

Same as PS1.

PROMPT_EOL_MARK

PS1 <S>

PS2 <S>

PS3 <S>

PS4 <S>

When the PROMPT_CR and PROMPT_SP options are set, the PROMPT_EOL_MARK param-
eter can be used to customize how the end of partial lines are shown. This parameter
undergoes prompt expansion, with the PROMPT_PERCENT option set. If not set, the
default behavior is equivalent to the value ‘%B%SV/#%s%b’.

The primary prompt string, printed before a command is read. It undergoes a spe-
cial form of expansion before being displayed; see Chapter 13 [Prompt Expansion],
page 35. The default is ‘%m%# .

The secondary prompt, printed when the shell needs more information to complete
a command. It is expanded in the same way as PS1. The default is ‘%_> ’, which
displays any shell constructs or quotation marks which are currently being processed.

Selection prompt used within a select loop. It is expanded in the same way as
PS1. The default is ‘?# .

The execution trace prompt. Default is ‘+%N:%i> ’, which displays the name of the
current shell structure and the line number within it. In sh or ksh emulation, the
default is ‘+ .

psvar <S> <Z> (PSVAR <S>)

An array (colon-separated list) whose elements can be used in PROMPT strings. Set-
ting psvar also sets PSVAR, and vice versa.

READNULLCMD <S>

The command name to assume if a single input redirection is specified with no
command. Defaults to more.

REPORTMEMORY

REPORTTIME

REPLY

If nonnegative, commands whose maximum resident set size (roughly speaking, main
memory usage) in kilobytes is greater than this value have timing statistics reported.
The format used to output statistics is the value of the TIMEFMT parameter, which is
the same as for the REPORTTIME variable and the time builtin; note that by default
this does not output memory usage. Appending " max RSS %M" to the value of
TIMEFMT causes it to output the value that triggered the report. If REPORTTIME is
also in use, at most a single report is printed for both triggers. This feature requires
the getrusage () system call, commonly supported by modern Unix-like systems.

If nonnegative, commands whose combined user and system execution times (mea-
sured in seconds) are greater than this value have timing statistics printed for them.
Output is suppressed for commands executed within the line editor, including com-
pletion; commands explicitly marked with the time keyword still cause the summary
to be printed in this case.

This parameter is reserved by convention to pass string values between shell scripts
and shell builtins in situations where a function call or redirection are impossible or
undesirable. The read builtin and the select complex command may set REPLY,

Chapter 15: Parameters 93

and filename generation both sets and examines its value when evaluating certain
expressions. Some modules also employ REPLY for similar purposes.

reply As REPLY, but for array values rather than strings.

RPROMPT <S>

RPS1 <S> This prompt is displayed on the right-hand side of the screen when the primary
prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE
option is set. It is expanded in the same way as PS1.

RPROMPT2 <S>

RPS2 <S> This prompt is displayed on the right-hand side of the screen when the secondary
prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE
option is set. It is expanded in the same way as PS2.

SAVEHIST The maximum number of history events to save in the history file.

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

SPROMPT <S>
The prompt used for spelling correction. The sequence ‘R’ expands to the string
which presumably needs spelling correction, and ‘%r’ expands to the proposed cor-
rection. All other prompt escapes are also allowed.

The actions available at the prompt are [nyae]:

n (‘no’) (default)
Discard the correction and run the command.

y (‘ves’) Make the correction and run the command.
a (‘abort’) Discard the entire command line without running it.
e (‘edit’) Resume editing the command line.

STTY If this parameter is set in a command’s environment, the shell runs the stty com-
mand with the value of this parameter as arguments in order to set up the terminal
before executing the command. The modes apply only to the command, and are
reset when it finishes or is suspended. If the command is suspended and continued
later with the fg or wait builtins it will see the modes specified by STTY, as if it were
not suspended. This (intentionally) does not apply if the command is continued via
‘kill -CONT’. STTY is ignored if the command is run in the background, or if it is
in the environment of the shell but not explicitly assigned to in the input line. This
avoids running stty at every external command by accidentally exporting it. Also
note that STTY should not be used for window size specifications; these will not be
local to the command.

TERM <S> The type of terminal in use. This is used when looking up termcap sequences. An
assignment to TERM causes zsh to re-initialize the terminal, even if the value does
not change (e.g., ‘TERM=$TERM’). It is necessary to make such an assignment upon
any change to the terminal definition database or terminal type in order for the new
settings to take effect.

TERMINFO <S>
A reference to your terminfo database, used by the ‘terminfo’ library when the
system has it; see man page terminfo(5). If set, this causes the shell to reinitialise
the terminal, making the workaround ‘TERM=$TERM’ unnecessary.

TERMINFO_DIRS <S>
A colon-seprarated list of terminfo databases, used by the ‘terminfo’ library when
the system has it; see man page terminfo(5). This variable is only used by certain

Chapter 15: Parameters 94

TIMEFMT

TMOUT

TMPPREFIX

terminal libraries, in particular ncurses; see man page terminfo(5) to check support
on your system. If set, this causes the shell to reinitialise the terminal, making
the workaround ‘TERM=$TERM’ unnecessary. Note that unlike other colon-separated
arrays this is not tied to a zsh array.

The format of process time reports with the time keyword. The default is ‘%J %U
user %S system %P cpu %*E total’. Recognizes the following escape sequences,
although not all may be available on all systems, and some that are available may
not be useful:

hoto AR

YA CPU seconds spent in user mode.

hS CPU seconds spent in kernel mode.

4E Elapsed time in seconds.

WP The CPU percentage, computed as 100*(%U+%S) /%E.

W Number of times the process was swapped.

X The average amount in (shared) text space used in kilobytes.

%D The average amount in (unshared) data/stack space used in kilobytes.
K The total space used (%X+%D) in kilobytes.

WM The maximum memory the process had in use at any time in kilobytes.
yAY The number of major page faults (page needed to be brought from disk).
%R The number of minor page faults.

Al The number of input operations.

%0 The number of output operations.

hr The number of socket messages received.

hs The number of socket messages sent.

Tk The number of signals received.

how Number of voluntary context switches (waits).

he Number of involuntary context switches.

hd The name of this job.

A star may be inserted between the percent sign and flags printing time (e.g., ‘%*E’);
this causes the time to be printed in ‘hh: mm:ss. ttt’ format (hours and minutes are
only printed if they are not zero). Alternatively, ‘m’ or ‘v’ may be used (e.g., ‘%mE’)
to produce time output in milliseconds or microseconds, respectively.

If this parameter is nonzero, the shell will receive an ALRM signal if a command is not
entered within the specified number of seconds after issuing a prompt. If there is a
trap on SIGALRM, it will be executed and a new alarm is scheduled using the value
of the TMOUT parameter after executing the trap. If no trap is set, and the idle time
of the terminal is not less than the value of the TMOUT parameter, zsh terminates.
Otherwise a new alarm is scheduled to TMOUT seconds after the last keypress.

A pathname prefix which the shell will use for all temporary files. Note that this
should include an initial part for the file name as well as any directory names. The
default is ‘/tmp/zsh’.

Chapter 15: Parameters 95

TMPSUFFIX

A filename suffix which the shell will use for temporary files created by process
substitutions (e.g., ‘=(1ist)’). Note that the value should include a leading dot .’
if intended to be interpreted as a file extension. The default is not to append any
suffix, thus this parameter should be assigned only when needed and then unset
again.

watch <S> <Z> (WATCH <S>)

WATCHFMT

An array (colon-separated list) of login/logout events to report.

If it contains the single word ‘all’, then all login/logout events are reported. If it

contains the single word ‘notme’, then all events are reported as with ‘all’ except

$USERNAME.

An entry in this list may consist of a username, an ‘@’ followed by a remote hostname,

and a ‘%’ followed by a line (tty). Any of these may be a pattern (be sure to quote

this during the assignment to watch so that it does not immediately perform file

generation); the setting of the EXTENDED_GLOB option is respected. Any or all of

these components may be present in an entry; if a login/logout event matches all of

them, it is reported.

For example, with the EXTENDED_GLOB option set, the following:
watch=(""(pws|barts)’)

causes reports for activity associated with any user other than pws or barts.

The format of login/logout reports if the watch parameter is set. Default is ‘%n has
%a %1 from %m’. Recognizes the following escape sequences:

%»n The name of the user that logged in/out.

%ha The observed action, i.e. "logged on" or "logged off".

yal The line (tty) the user is logged in on.

WM The full hostname of the remote host.

Jm The hostname up to the first ‘.. If only the IP address is available or

the utmp field contains the name of an X-windows display, the whole
name is printed.

NOTE: The ‘/m’ and ‘%M’ escapes will work only if there is a host name
field in the utmp on your machine. Otherwise they are treated as ordi-
nary strings.

%S (%s) Start (stop) standout mode.
%U (%u) Start (stop) underline mode.
%B (%b) Start (stop) boldface mode.

ég The time, in 12-hour, am/pm format.
WT The time, in 24-hour format.

how The date in ‘day-dd’ format.

YAl The date in ‘mm/dd/yy’ format.

%D The date in ‘yy-mm-dd’ format.
#D{string}

The date formatted as string using the strftime function, with zsh
extensions as described by Chapter 13 [Prompt Expansion], page 35.

Chapter 15: Parameters 96

% (x: true-text : false-text)
Specifies a ternary expression. The character following the x is arbi-
trary; the same character is used to separate the text for the "true"
result from that for the "false" result. Both the separator and the right
parenthesis may be escaped with a backslash. Ternary expressions may
be nested.

Y

The test character x may be any one of ‘1’, ‘n’, ‘m’ or ‘M’, which indi-
cate a ‘true’ result if the corresponding escape sequence would return
a non-empty value; or it may be ‘a’, which indicates a ‘true’ result if
the watched user has logged in, or ‘false’ if he has logged out. Other
characters evaluate to neither true nor false; the entire expression is
omitted in this case.

If the result is ‘true’, then the true-text is formatted according to the
rules above and printed, and the false-text is skipped. If ‘false’, the
true-text is skipped and the false-text is formatted and printed. Either
or both of the branches may be empty, but both separators must be
present in any case.

WORDCHARS <S>
A list of non-alphanumeric characters considered part of a word by the line editor.

ZBEEP If set, this gives a string of characters, which can use all the same codes as the
bindkey command as described in Section 22.32 [The zsh/zle Module], page 333,
that will be output to the terminal instead of beeping. This may have a visible
instead of an audible effect; for example, the string ‘\e[?5h\e[?51" on a vt100
or xterm will have the effect of flashing reverse video on and off (if you usually
use reverse video, you should use the string ‘\e[?51\e[?5h’ instead). This takes
precedence over the NOBEEP option.

ZDOTDIR The directory to search for shell startup files (.zshrc, etc), if not $HOME.

zle_bracketed_paste
Many terminal emulators have a feature that allows applications to identify when
text is pasted into the terminal rather than being typed normally. For ZLE, this
means that special characters such as tabs and newlines can be inserted instead of
invoking editor commands. Furthermore, pasted text forms a single undo event and
if the region is active, pasted text will replace the region.

This two-element array contains the terminal escape sequences for enabling and
disabling the feature. These escape sequences are used to enable bracketed paste
when ZLE is active and disable it at other times. Unsetting the parameter has the
effect of ensuring that bracketed paste remains disabled.

zle_highlight
An array describing contexts in which ZLE should highlight the input text. See
Section 18.7 [Character Highlighting], page 195.

ZLE_LINE_ABORTED
This parameter is set by the line editor when an error occurs. It contains the line that
was being edited at the point of the error. ‘print -zr -- $ZLE_LINE_ABORTED’ can
be used to recover the line. Only the most recent line of this kind is remembered.

ZLE_REMOVE_SUFFIX_CHARS

ZLE_SPACE_SUFFIX_CHARS
These parameters are used by the line editor. In certain circumstances suffixes (typ-
ically space or slash) added by the completion system will be removed automatically,

Chapter 16: Options 97

either because the next editing command was not an insertable character, or because
the character was marked as requiring the suffix to be removed.

These variables can contain the sets of characters that will cause the suffix to be
removed. If ZLE_REMOVE_SUFFIX_CHARS is set, those characters will cause the suffix
to be removed; if ZLE_SPACE_SUFFIX_CHARS is set, those characters will cause the
suffix to be removed and replaced by a space.

If ZLE_REMOVE_SUFFIX_CHARS is not set, the default behaviour is equivalent to:
ZLE_REMOVE_SUFFIX_CHARS=$’ \t\n;&|’

If ZLE_REMOVE_SUFFIX_CHARS is set but is empty, no characters have this behaviour.
ZLE_SPACE_SUFFIX_CHARS takes precedence, so that the following:

ZLE_SPACE_SUFFIX_CHARS=$’&|’

causes the characters ‘&” and ‘|’ to remove the suffix but to replace it with a space.

To illustrate the difference, suppose that the option AUTO_REMOVE_SLASH is in effect
and the directory DIR has just been completed, with an appended /, following which
the user types ‘&’. The default result is ‘DIR&’. With ZLE_REMOVE_SUFFIX_CHARS
set but without including ‘&’ the result is ‘DIR/&’. With ZLE_SPACE_SUFFIX_CHARS
set to include ‘&’ the result is ‘DIR &’.

Note that certain completions may provide their own suffix removal or replacement
behaviour which overrides the values described here. See the completion system
documentation in Chapter 20 [Completion System], page 213.

ZLE_RPROMPT_INDENT <S>
If set, used to give the indentation between the right hand side of the right prompt
in the line editor as given by RPS1 or RPROMPT and the right hand side of the screen.
If not set, the value 1 is used.

Typically this will be used to set the value to 0 so that the prompt appears flush
with the right hand side of the screen. This is not the default as many terminals
do not handle this correctly, in particular when the prompt appears at the extreme
bottom right of the screen. Recent virtual terminals are more likely to handle this
case correctly. Some experimentation is necessary.

16 Options

16.1 Specifying Options

Options are primarily referred to by name. These names are case insensitive and underscores
are ignored. For example, ‘allexport’ is equivalent to ‘A__11eXP_ort’.

The sense of an option name may be inverted by preceding it with ‘no’, so ‘setopt No_Beep’
is equivalent to ‘unsetopt beep’. This inversion can only be done once, so ‘nonobeep’ is not a
synonym for ‘beep’. Similarly, ‘tify’ is not a synonym for ‘nonotify’ (the inversion of ‘notify’).
Some options also have one or more single letter names. There are two sets of single let-
ter options: one used by default, and another used to emulate sh/ksh (used when the
SH_OPTION_LETTERS option is set). The single letter options can be used on the shell com-
mand line, or with the set, setopt and unsetopt builtins, as normal Unix options preceded by

(o

The sense of the single letter options may be inverted by using ‘+’ instead of ‘=’. Some of the
single letter option names refer to an option being off, in which case the inversion of that name

Chapter 16: Options 98

refers to the option being on. For example, ‘+n’ is the short name of ‘exec’; and ‘-n’ is the short
name of its inversion, ‘noexec’.

In strings of single letter options supplied to the shell at startup, trailing whitespace will be
ignored; for example the string ‘-f ’ will be treated just as ‘-f’, but the string ‘-f i’ is an
error. This is because many systems which implement the ‘#!” mechanism for calling scripts do
not strip trailing whitespace.

16.2 Description of Options

In the following list, options set by default in all emulations are marked <D>; those set by
default only in csh, ksh, sh, or zsh emulations are marked <C>, <K>, <S>, <Z> as appropriate.
When listing options (by ‘setopt’, ‘unsetopt’, ‘set -o’ or ‘set +o’), those turned on by default
appear in the list prefixed with ‘no’. Hence (unless KSH_OPTION_PRINT is set), ‘setopt’ shows
all options whose settings are changed from the default.

16.2.1 Changing Directories

AUTO_CD (-J)
If a command is issued that can’t be executed as a normal command, and the
command is the name of a directory, perform the cd command to that directory.
This option is only applicable if the option SHIN_STDIN is set, i.e. if commands are
being read from standard input. The option is designed for interactive use; it is
recommended that cd be used explicitly in scripts to avoid ambiguity.

AUTO_PUSHD (-N)
Make cd push the old directory onto the directory stack.

CDABLE_VARS (-T)
If the argument to a cd command (or an implied cd with the AUTO_CD option set)
is not a directory, and does not begin with a slash, try to expand the expression as
if it were preceded by a ‘' (see Section 14.7 [Filename Expansion], page 62).

CD_SILENT
Never print the working directory after a cd (whether explicit or implied with the
AUTO_CD option set). cd normally prints the working directory when the argument
given to it was -, a stack entry, or the name of a directory found under CDPATH.
Note that this is distinct from pushd’s stack-printing behaviour, which is controlled
by PUSHD_SILENT. This option overrides the printing-related effects of POSIX_CD.

CHASE_DOTS
When changing to a directory containing a path segment ‘. .” which would otherwise
be treated as canceling the previous segment in the path (in other words, ‘foo/. .’
would be removed from the path, or if ‘. .’ is the first part of the path, the last part
of the current working directory would be removed), instead resolve the path to the
physical directory. This option is overridden by CHASE_LINKS.

For example, suppose /foo/bar is a link to the directory /alt/rod. Without this
option set, ‘cd /foo/bar/..’ changes to /foo; with it set, it changes to /alt. The
same applies if the current directory is /foo/bar and ‘cd ..’ is used. Note that all
other symbolic links in the path will also be resolved.

CHASE_LINKS (-w)
Resolve symbolic links to their true values when changing directory. This also has
the effect of CHASE_DOTS, i.e. a ‘..’ path segment will be treated as referring to the
physical parent, even if the preceding path segment is a symbolic link.

Chapter 16: Options 99

POSIX_CD <K> <S>

Modifies the behaviour of c¢d, chdir and pushd commands to make them more com-
patible with the POSIX standard. The behaviour with the option unset is described
in the documentation for the cd builtin in Chapter 17 [Shell Builtin Commands],
page 123. If the option is set, the shell does not test for directories beneath the
local directory (‘.”) until after all directories in cdpath have been tested, and the cd
and chdir commands do not recognise arguments of the form ‘{+|-}n’ as directory
stack entries.

Also, if the option is set, the conditions under which the shell prints the new directory
after changing to it are modified. It is no longer restricted to interactive shells
(although printing of the directory stack with pushd is still limited to interactive
shells); and any use of a component of CDPATH, including a ‘.’ but excluding an empty
component that is otherwise treated as ‘.’, causes the directory to be printed.

PUSHD_IGNORE_DUPS
Don’t push multiple copies of the same directory onto the directory stack.

PUSHD_MINUS
Exchanges the meanings of ‘+’ and ‘=’ when used with a number to specify a directory
in the stack.

PUSHD_SILENT (-E)
Do not print the directory stack after pushd or popd.

PUSHD_TO_HOME (-D)
Have pushd with no arguments act like ‘pushd $HOME’.

16.2.2 Completion

ALWAYS_LAST_PROMPT <D>
If unset, key functions that list completions try to return to the last prompt if given
a numeric argument. If set these functions try to return to the last prompt if given
no numeric argument.

ALWAYS_TO_END
If a completion is performed with the cursor within a word, and a full completion is
inserted, the cursor is moved to the end of the word. That is, the cursor is moved
to the end of the word if either a single match is inserted or menu completion is
performed.

AUTO_LIST (-9) <D>
Automatically list choices on an ambiguous completion.

AUTO_MENU <D>
Automatically use menu completion after the second consecutive request for com-
pletion, for example by pressing the tab key repeatedly. This option is overridden
by MENU_COMPLETE.

AUTO_NAME_DIRS
Any parameter that is set to the absolute name of a directory immediately becomes a
name for that directory, that will be used by the ‘%~ and related prompt sequences,
and will be available when completion is performed on a word starting with ~’.
(Otherwise, the parameter must be used in the form ‘~param’ first.)

AUTO_PARAM_KEYS <D>
If a parameter name was completed and a following character (normally a space)
automatically inserted, and the next character typed is one of those that have to

Chapter 16: Options 100

come directly after the name (like ‘}’; ‘:’; etc.), the automatically added character is
deleted, so that the character typed comes immediately after the parameter name.
Completion in a brace expansion is affected similarly: the added character is a *,’,
which will be removed if ‘}’ is typed next.

AUTO_PARAM_SLASH <D>
If a parameter is completed whose content is the name of a directory, then add a
trailing slash instead of a space.

AUTO_REMOVE_SLASH <D>
When the last character resulting from a completion is a slash and the next character
typed is a word delimiter, a slash, or a character that ends a command (such as a
semicolon or an ampersand), remove the slash.

BASH_AUTO_LIST
On an ambiguous completion, automatically list choices when the completion func-
tion is called twice in succession. This takes precedence over AUTO_LIST. The setting
of LIST_AMBIGUOUS is respected. If AUTO_MENU is set, the menu behaviour will then
start with the third press. Note that this will not work with MENU_COMPLETE, since
repeated completion calls immediately cycle through the list in that case.

COMPLETE_ALTASES
Prevents aliases on the command line from being internally substituted before com-
pletion is attempted. The effect is to make the alias a distinct command for com-
pletion purposes.

COMPLETE_IN_WORD
If unset, the cursor is set to the end of the word if completion is started. Otherwise
it stays there and completion is done from both ends.

GLOB_COMPLETE
When the current word has a glob pattern, do not insert all the words resulting from
the expansion but generate matches as for completion and cycle through them like
MENU_COMPLETE. The matches are generated as if a ‘*’ was added to the end of the
word, or inserted at the cursor when COMPLETE_IN_WORD is set. This actually uses
pattern matching, not globbing, so it works not only for files but for any completion,
such as options, user names, etc.

Note that when the pattern matcher is used, matching control (for example, case-
insensitive or anchored matching) cannot be used. This limitation only applies when
the current word contains a pattern; simply turning on the GLOB_COMPLETE option
does not have this effect.

HASH_LIST_ALL <D>
Whenever a command completion or spelling correction is attempted, make sure the
entire command path is hashed first. This makes the first completion slower but
avoids false reports of spelling errors.

LIST_AMBIGUOUS <D>
This option works when AUTO_LIST or BASH_AUTO_LIST is also set. If there is an
unambiguous prefix to insert on the command line, that is done without a completion
list being displayed; in other words, auto-listing behaviour only takes place when
nothing would be inserted. In the case of BASH_AUTO_LIST, this means that the list
will be delayed to the third call of the function.

LIST_BEEP <D>
Beep on an ambiguous completion. More accurately, this forces the completion
widgets to return status 1 on an ambiguous completion, which causes the shell to

Chapter 16: Options 101

beep if the option BEEP is also set; this may be modified if completion is called from
a user-defined widget.

LIST_PACKED
Try to make the completion list smaller (occupying less lines) by printing the matches
in columns with different widths.

LIST_ROWS_FIRST
Lay out the matches in completion lists sorted horizontally, that is, the second match
is to the right of the first one, not under it as usual.

LIST_TYPES (-X) <D>
When listing files that are possible completions, show the type of each file with a
trailing identifying mark.

MENU_COMPLETE (—Y)
On an ambiguous completion, instead of listing possibilities or beeping, insert the
first match immediately. Then when completion is requested again, remove the first
match and insert the second match, etc. When there are no more matches, go back
to the first one again. reverse-menu-complete may be used to loop through the
list in the other direction. This option overrides AUTO_MENU.

REC_EXACT (-S)
If the string on the command line exactly matches one of the possible completions,
it is accepted, even if there is another completion (i.e. that string with something
else added) that also matches.

16.2.3 Expansion and Globbing

BAD_PATTERN (+2) <C> <Z>
If a pattern for filename generation is badly formed, print an error message. (If this
option is unset, the pattern will be left unchanged.)

BARE_GLOB_QUAL <Z>
In a glob pattern, treat a trailing set of parentheses as a qualifier list, if it contains
no ‘|’, ‘C or (if special) ‘~’ characters. See Section 14.8 [Filename Generation],
page 64.

BRACE_CCL
Expand expressions in braces which would not otherwise undergo brace expansion
to a lexically ordered list of all the characters. See Section 14.6 [Brace Expansion],
page 61.

CASE_GLOB <D>
Make globbing (filename generation) sensitive to case. Note that other uses of
patterns are always sensitive to case. If the option is unset, the presence of any
character which is special to filename generation will cause case-insensitive matching.
For example, cvs(/) can match the directory CVS owing to the presence of the
globbing flag (unless the option BARE_GLOB_QUAL is unset).

CASE_MATCH <D>
Make regular expressions using the zsh/regex module (including matches with =")
sensitive to case.

CSH_NULL_GLOB <C>
If a pattern for filename generation has no matches, delete the pattern from the
argument list; do not report an error unless all the patterns in a command have no
matches. Overrides NOMATCH.

Chapter 16: Options 102

EQUALS <Z>
Perform = filename expansion. (See Section 14.7 [Filename Expansion|, page 62.)

EXTENDED_GLOB
Treat the ‘#’, *~’ and ‘~’ characters as part of patterns for filename generation, etc.
(An initial unquoted ‘~ always produces named directory expansion.)

FORCE_FLOAT
Constants in arithmetic evaluation will be treated as floating point even without the
use of a decimal point; the values of integer variables will be converted to floating
point when used in arithmetic expressions. Integers in any base will be converted.

GLOB (+F, ksh: +f) <D>
Perform filename generation (globbing). (See Section 14.8 [Filename Generation],
page 64.)

GLOB_ASSIGN <C>

If this option is set, filename generation (globbing) is performed on the right hand
side of scalar parameter assignments of the form ‘name=pattern (e.g. ‘foo=+"). If
the result has more than one word the parameter will become an array with those
words as arguments. This option is provided for backwards compatibility only:
globbing is always performed on the right hand side of array assignments of the
form ‘name=(value)’ (e.g. ‘foo=(*)’) and this form is recommended for clarity;
with this option set, it is not possible to predict whether the result will be an array
or a scalar.

GLOB_DOTS (-4)
Do not require a leading ‘.’ in a filename to be matched explicitly.

GLOB_STAR_SHORT
When this option is set and the default zsh-style globbing is in effect, the pattern
“+x/*’ can be abbreviated to ‘**’ and the pattern ‘***/x’ can be abbreviated to
*xx. Hence ‘**.c’ finds a file ending in .c in any subdirectory,